CrystEngComm
Paper
electron deficient areas on a simple bicyclic ring structure. By
studying the solid-state assembly of its analogues, we have ob-
served that the electron deficient portions of the triazole ring
and acyl substituent associate with a relatively electron rich
benzene ring under a variety of substituent conditions. How-
ever, this donor–acceptor stacking only occurred with the pres-
ence of both electron donating and electron withdrawing
groups substituted onto the ring system. Although the interac-
tion was still observed with the use of different electron-
donating and electron-withdrawing groups, cofacial stacking
was lost in all examples. Similarly, 2D sheet formation was
found to be lost with either removal of benzene substituents or
modification of the N-acyl group. Overall, these results empha-
sise that the cofacial stacking assembly of activated benzo-
triazole 1 is extremely sensitive and have been achieved by the
molecule only through a sensitive balance of both electrostatic
and hydrogen bonding character. Moreover, the observation of
substituent–substituent and substituent–aromatic interactions
in the cofacially π-stacked molecule is in agreement with the di-
rect substituent model for π-interactions.
12 S. E. Wheeler and K. Houk, J. Am. Chem. Soc., 2008, 130,
10854–10855.
13 S. E. Wheeler, J. Am. Chem. Soc., 2011, 133, 10262–10274.
14 A. L. Ringer, M. O. Sinnokrot, R. P. Lively and C. D. Sherrill,
Chem. – Eur. J., 2006, 12, 3821–3828.
15 E. C. Lee, D. Kim, P. Jurečka, P. Tarakeshwar, P. Hobza and
K. S. Kim, J. Phys. Chem. A, 2007, 111, 3446–3457.
16 S. E. Wheeler, A. J. McNeil, P. Müller, T. M. Swager and K.
Houk, J. Am. Chem. Soc., 2010, 132, 3304–3311.
17 H. Y. Au-Yeung, F. B. Cougnon, S. Otto, G. D. Pantoş and
J. K. Sanders, Chem. Sci., 2010, 1, 567–574.
18 F. B. Cougnon, H. Y. Au-Yeung, G. D. Pantos and J. K.
Sanders, J. Am. Chem. Soc., 2011, 133, 3198–3207.
19 G. Kaiser, T. Jarrosson, S. Otto, Y. F. Ng, A. D. Bond and J. K.
Sanders, Angew. Chem., 2004, 116, 1993–1996.
20 D. G. Hamilton, J. E. Davies, L. Prodi and J. K. M. Sanders,
Chem. – Eur. J., 1998, 4, 608–620.
21 H. Y. Au-Yeung, P. Pengo, G. D. Pantos, S. Otto and J. K. M.
Sanders, Chem. Commun., 2009, 419–421, DOI: 10.1039/
B816979A.
22 A. Das, M. R. Molla, A. Banerjee, A. Paul and S. Ghosh,
Chem. – Eur. J., 2011, 17, 6061–6066.
23 M. R. Molla, A. Das and S. Ghosh, Chem. – Eur. J., 2010, 16,
10084–10093.
Conflicts of interest
There are no conflicts to declare.
24 V. Percec, M. Glodde, T. Bera, Y. Miura, I. Shiyanovskaya, K.
Singer, V. Balagurusamy, P. Heiney, I. Schnell and A. Rapp,
Nature, 2002, 419, 384.
25 H. M. Colquhoun, Z. Zhu, D. J. Williams, M. G. Drew, C. J.
Cardin, Y. Gan, A. G. Crawford and T. B. Marder, Chem. –
Eur. J., 2010, 16, 907–918.
26 A. Marcos Ramos, S. C. Meskers, E. H. Beckers, R. B. Prince,
L. Brunsveld and R. A. Janssen, J. Am. Chem. Soc., 2004, 126,
9630–9644.
Acknowledgements
This work was supported by a Project Grant from the National
Health and Medical Research Council (NHMRC) Australia to
N. K. [NHMRC Grant APP1008014]. We are thankful to the
Nuclear Magnetic Resonance Facility and the Bioanalytical
Mass Spectrometry Facility (BMSF) in the Mark Wainwright
Analytical Centre at UNSW Sydney for the opportunity of
using their instruments.
27 S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann,
B. W. Greenland, P. J. Harris, W. Hayes, M. E. Mackay and
S. J. Rowan, Chem. Commun., 2009, 6717–6719.
28 S. Burattini, B. W. Greenland, D. H. Merino, W. Weng, J.
Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W.
Hamley and S. J. Rowan, J. Am. Chem. Soc., 2010, 132,
12051–12058.
29 H. M. Colquhoun, D. J. Williams and Z. Zhu, J. Am. Chem.
Soc., 2002, 124, 13346–13347.
30 J. C. Barnes, M. Juríček, N. L. Strutt, M. Frasconi, S.
Sampath, M. A. Giesener, P. L. McGrier, C. J. Bruns, C. L.
Stern, A. A. Sarjeant and J. F. Stoddart, J. Am. Chem. Soc.,
2013, 135, 183–192.
References
1 S. Hans-Jörg, Angew. Chem., Int. Ed., 2009, 48, 3924–3977.
2 E. A. Meyer, R. K. Castellano and F. Diederich, Angew.
Chem., Int. Ed., 2003, 42, 1210–1250.
3 D. B. Amabilino and J. F. Stoddart, Chem. Rev., 1995, 95,
2725–2828.
4 J. Šponer, K. E. Riley and P. Hobza, Phys. Chem. Chem. Phys.,
2008, 10, 2595–2610.
5 J. Šponer, P. Jurečka, I. Marchan, F. J. Luque, M. Orozco and
P. Hobza, Chem. – Eur. J., 2006, 12, 2854–2865.
6 C. A. Hunter, J. Mol. Biol., 1993, 230, 1025–1054.
7 C. A. Hunter and J. K. Sanders, J. Am. Chem. Soc., 1990, 112,
5525–5534.
31 L. Chen, Y.-M. Zhang, L.-H. Wang and Y. Liu, J. Org. Chem.,
2013, 78, 5357–5363.
8 J. H. Williams, J. K. Cockcroft and A. N. Fitch, Angew. Chem.,
Int. Ed. Engl., 1992, 31, 1655–1657.
32 H. M. Colquhoun, Z. Zhu and D. J. Williams, Org. Lett.,
2003, 5, 4353–4356.
9 C. R. Martinez and B. L. Iverson, Chem. Sci., 2012, 3,
2191–2201.
33 T. Uchikura, K. Ono, K. Takahashi and N. Iwasawa, Angew.
Chem., Int. Ed., 2018, 57, 2130–2133.
10 M. J. Rashkin and M. L. Waters, J. Am. Chem. Soc.,
2002, 124, 1860–1861.
34 C. G. Claessens and J. F. Stoddart, J. Phys. Org. Chem.,
1997, 10, 254–272.
11 S. E. Snyder, B. S. Huang, Y. W. Chu, H. S. Lin and J. R.
Carey, Chem. – Eur. J., 2012, 18, 12663–12671.
35 S. A. Nepogodiev and J. F. Stoddart, Chem. Rev., 1998, 98,
1959–1976.
This journal is © The Royal Society of Chemistry 2018
CrystEngComm