G Model
CCLET 3479 1–9
8
Z. Zaheer et al. / Chinese Chemical Letters xxx (2015) xxx–xxx
DB766 analogs modified in the linker region and bis-arylimidamide structure–
activity relationships, Bioorg. Med. Chem. Lett. 22 (2012) 6806–6810.
[14] V. Mun˜oz, C. Morretti, M. Sauvain, et al., Isolation of bis-indole alkaloids with
antileishmanial and antibacterial activities from Perschiera van heurkii (syn.
Tabernaemontana van heurkii), Planta Med. 60 (1994) 455–459.
[15] (a) A.G. Tempone, A.C.M.P. da Silva, C.A. Brandt, et al., Synthesis and antileish-
manial activities of novel 3-substituted quinolines, Antimicrob. Agents Che-
mother. 49 (2005) 1076–1080;
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
382
383
384
385
386
387
388
389
390
391
392
mol/L), 6h (IC50 = 10.60 mmol/L), and 6i (IC50 = 10.73 mmol/L)
were shown potent antioxidants when compared with standards.
None of the synthesized compounds were cytotoxicity to HeLa cell
lines upto their highest tested concentrations. A molecular docking
study suggested the binding interactions of these compounds with
Adenine phosphoribosyltransferase of L. donovani. Furthermore,
analysis of the ADME parameters for synthesized compounds
suggested that they have good drug-like properties with potential
for oral delivery. The lead compounds will be investigated further
in an effort to develop more active, safe and cost-effective
antileishmanial and antioxidant agents.
(b) J.N. Sangshetti, F.A.K. Khan, A.A. Kulkarni, R. Arote, R.H. Patil, Antileishmanial
drug discovery: comprehensive review of the last 10 years, RSC Adv. 5 (2015)
32376–32415.
[16] V.K. Marrapu, M. Mittal, R. Shivahare, S. Gupta, K. Bhandari, Synthesis and
evaluation of new furanyl and thiophenyl azoles as antileishmanial agents,
Eur. J. Med. Chem. 46 (2011) 1694–1700.
[17] O. Kayser, A.F. Kiderlen, H. Laatsch, S.L. Croft, In vitro leishmanicidal activity of
monomeric and dimeric naphthoquinones, Acta Trop. 77 (2000) 307–314.
[18] (a) J.N. Sangshetti, D.B. Shinde, Synthesis of some novel 3-(1-(1-substitutedpi-
peridin-4-yl)-1H-1,2, 3-triazol-4-yl)-5-substituted phenyl-1,2,4-oxadiazoles as
antifungal agents, Eur. J. Med. Chem. 46 (2011) 1040–1044;
393
Acknowledgments
394
395
396
397
398
399
400
401
The authors are thankful to the Mrs. Fatma Rafiq Zakaria,
Chairman, Maulana Azad Educational Trust and Principal, Y.B.
Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Auranga-
bad 431 001 (M.S.), India for providing the laboratory facility. The
authors are also thankful to Bar C. (Department of Zoology,
University of Pune) for providing L. donovani culture. The authors
are also thankful to SAIF, Punjab University, Chandigarh, India for
providing NMR spectra.
(b) J.N. Sangshetti, R.R. Nagawade, D.B. Shinde, Synthesis of novel 3-(1-(1-substi-
tuted piperidin-4-yl)-1H-1,2, 3-triazol-4-yl)-1, 2, 4-oxadiazol-5(4H)-one as anti-
fungal agents, Bioorg. Med. Chem. Lett. 19 (2009) 3564–3567;
(c) J.N. Sangshetti, D.B. Shinde, One pot synthesis and SAR of some novel 3-
substituted 5,6-diphenyl-1, 2, 4-triazines as antifungal agents, Bioorg. Med.
Chem. Lett. 20 (2010) 742–745;
(d) J.N. Sangshetti, P.P. Dharmadhikari, R.S. Chouthe, et al., Microwave assisted
nano (ZnO–TiO2) catalyzed synthesis of some new 4,5,6,7-tetrahydro-6-((5-
substituted-1, 3,4-oxadiazol-2-yl)methyl)thieno[2,3-c]pyridine as antimicrobial
agents, Bioorg. Med. Chem. Lett. 23 (2013) 2250–2253;
(e) Z. Zaheer, F.A.K. Khan, J.N. Sangshetti, R.H. Patil, Efficient one-pot synthe-
sis, molecular docking and in silico ADME prediction of bis-(4-hydroxycou-
marin-3-yl) methane derivatives as antileishmanial agents, EXCLI J. 14 (2015)
935–947.
402
Appendix A. Supplementary data
[19] (a) J.N. Sangshetti, A.R. Chabukswar, D.B. Shinde, Microwave assisted one pot
synthesis of some novel 2,5-disubstituted 1,3,4-oxadiazoles as antifungal agents,
Bioorg. Med. Chem. Lett. 21 (2011) 444–448;
403
404
Supplementary material related to this article can be found, in the
(b) J.N. Sangshetti, R.I. Shaikh, F.A.K. Khan, et al., Synthesis, antileishmanial
activity and docking study of N0-substitutedbenzylidene-2-(6,7-dihy-
drothieno[3,2-c]pyridin-5(4H)-yl)acetohydrazides, Bioorg. Med. Chem. Lett. 24
(2014) 1605–1610;
(c) J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, M.G. Damale, D.B. Shinde, Synthesis,
docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl)
methyl)-4,5, 6,7-tetrahydrothieno[3,2-c]pyridine as antifungal agents, Chin.
Chem. Lett. 25 (2014) 1033–1038;
(d) J.N. Sangshetti, F.A.K. Khan, R.H. Patil, et al., Biofilm inhibition of linezolid-like
Schiff bases: synthesis, biological activity, molecular docking and in silico ADME
prediction, Bioorg. Med. Chem. Lett. 25 (2015) 874–880;
(e) F.A.K. Khan, J.N. Sangshetti, Design, synthesis and molecular docking study of
hybrid quinoline-4-YL-oxadiazoles/oxathiadiazoles as potent antifungal agents,
Int. J. Pharm. Pharm. Sci. 7 (2015) 223–229.
405
References
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
[1] (a) J.D. Berman, Human leishmaniasis: clinical, diagnostic, and chemotherapeutic
developments in the last 10 years, Clin. Infect Dis. 24 (1997) 684–703;
(b) M. Khaw, C.B. Panosian, Human antiprotozoal therapy: past, present, and
future, Clin. Microbiol. Rev. 8 (1995) 427–439.
[2] R. Reithinger, J.C. Dujardin, H. Louzir, et al., Cutaneous leishmaniasis, Lancet Infect.
Dis. 7 (2007) 581–596.
[3] World Health Organization (WHO), Tropical Disease Research Progress, World
Health Organization (WHO), 2001.
[4] R.W. Ashford, P. Desjeux, P. DeRaadt, Estimation of population at risk of infection
and number of cases of leishmaniasis, Parasitol. Today 8 (1992) 104–105.
[5] (a) H.W. Murray, Treatment of visceral leishmaniasis in 2004, Am. J. Trop. Med.
Hyg. 71 (2004) 787–794;
(b) S.L. Croft, Recent developments in the chemotherapy of leishmaniasis, Trends
Pharmacol. Sci. 9 (1988) 376–381;
(c) J.D. Berman, Chemotherapy for leishmaniasis: biochemical mechanisms, clin-
ical efficacy, and future strategies, Rev. Infect Dis. 10 (1988) 560–586.
[6] K.F. Gey, The antioxidant hypothesis of cardiovascular disease: epidemiology and
mechanisms, Biochem. Soc. Trans. 18 (1990) 1041–1045.
[20] M. Silva, H.B. Napolitano, J. Ellena, et al., 3-(5,7-Dimethoxy-2,2-dimethyl-2H-
benzo[b]pyran-6-yl) propionic acid: a potential inhibitor against Leishmania, Acta
Cryst. E59 (2003) o1575–o1577.
[21] A. Dutta, S. Bandyopadhyay, C. Mandal, M. Chatterjee, Development of a modified
MTT assay for screening antimonial resistant field isolates of Indian visceral
leishmaniasis, Parasitol. Int. 54 (2005) 119–122.
[22] M. Burits, F. Bucar, Antioxidant activity of Nigella sativa essential oil, Phytother.
Res. 14 (2000) 323–328.
[23] F. Denizlt, R.T. Lang, Rapid colorimetric assay for cell growth and survival:
modifications to the tetrazolium dye procedure giving improved sensitivity
and reliability, J. Immunol. Methods 89 (1986) 271–277.
[7] (a) M.A. Smith, G. Perry, P.L. Richey, et al., Oxidative damage in Alzheimer’s,
Nature 382 (1996) 120–121;
(b) M.N. Diaz, B. Frei, J.A. Vita, J.F. Keaney, Antioxidants and atherosclerotic heart
disease, N. Engl. J. Med. 337 (1997) 408–416.
[8] R.M. Wilson, S.J. Danishefsky, Small molecule natural products in the discovery of
therapeutic agents: the synthesis connection, J. Org. Chem. 71 (2006) 8329–8351.
[9] M.J. Chan-Bacab, L.M. Pen˜a-Rodrı´guez, Plant natural products with leishmanicidal
activity, Nat. Prod. Rep. 18 (2001) 674–688.
[24] VLife, Molecular Design Suite 4.3, VLife Sciences Technologies Pvt. Ltd, 2015
[25] C.L. Phillips, B. Ullman, R.G. Brennan, C.P. Hill, Crystal structures of adenine
phosphoribosyltransferase from Leishmania donovani, EMBO J. 18 (1999)
3533–3545.
[26] C.A. Lipinski, L. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computa-
tional approaches to estimate solubility and permeability in drug discovery and
development settings, Adv. Drug Deliv. Rev. 46 (2001) 3–26.
[10] (a) I. Kostova, S. Bhatia, P. Grigorov, et al., Coumarins as antioxidants, Curr. Med.
Chem. 18 (2011) 3929–3951;
(b) I. Kostova, Synthetic and natural coumarins as antioxidants, Mini Rev. Med.
Chem. 6 (2006) 365–374.
[11] (a) L. Gupta, A. Talwar, Nishi, et al., Synthesis of marine alkaloid: 8,9-dihydro-
coscinamide B and its analogues as novel class of antileishmanial agents, Bioorg.
Med. Chem. Lett. 17 (2007) 4075–4079;
[27] Molinspiration Chemoinformatics Brastislava, Slovak Republic, 2015 Available
[28] Y.H. Zhao, M.H. Abraham, J. Le, et al., Rate-limited steps of human oral absorption
and QSAR studies, Pharm. Res. 19 (2002) 1446–1457.
[29] J.C. Jung, Y.J. Jung, O.S. Park, A convenient one-pot synthesis of 4-hydroxycou-
marin, 4-hydroxythiocoumarin, and 4-hydroxyquinolin-2(1H)-one, Synth. Com-
mun. 31 (2001) 1195–1200.
[30] (a) M. Mohsenimehr, M. Mamaghani, F. Shirini, M. Sheykhan, F.A. Moghaddam,
One-pot synthesis of novel pyrido[2,3-d]pyrimidines using HAp-encapsulated-g-
Fe2O3 supported sulfonic acid nanocatalyst under solvent-free conditions, Chin.
Chem. Lett. 25 (2014) 1387–1391;
(b) S.S. Chauhan, L. Gupta, M. Mittal, et al., Synthesis and biological evaluation of
indolyl glyoxylamides as a new class of antileishmanial agents, Bioorg. Med.
Chem. Lett. 20 (2010) 6191–6194.
[12] (a) N.P. Sahu, C. Pal, N.B. Mandal, et al., Synthesis of a novel quinoline derivative,
2-(2-methylquinolin-4-ylamino)-N-phenylacetamide—a potential antileishma-
nial agent, Bioorg. Med. Chem. 10 (2002) 1687–1693;
(b) Z. Dardari, M. Lemrani, A. Bahloul, et al., Antileishmanial activity of a new 8-
hydroxyquinoline derivative designed 7-[50-(30-phenylisoxazolino)methyl]-8-
hydroxyquinoline: preliminary study, Farmaco 59 (2004) 195–199.
[13] (a) A. Tahghighi, S. Emami, S. Razmi, et al., New 5-(nitroheteroaryl)-1,3, 4-
thiadiazols containing acyclic amines at C-2: synthesis and SAR study for their
antileishmanial activity, J. Enzyme Inhib. Med. Chem. 28 (2013) 843–852;
(b) C.S. Reid, A.F. Farahat, X.H. Zhu, et al., Antileishmanial bis-arylimidamides:
(b) J.N. Sangshetti, F.A.K. Khan, C.S. Kute, Z. Zaheer, R.Z. Ahmed, One-pot three-
component synthesis of 3-(a-aminobenzyl)-4-hydroxycoumarin derivatives
using nanocrystalline TiO2 as reusable catalyst, Russ. J. Org. Chem. 51 (2015)
69–73;
(c) M.A. Ameen, S.M. Motamed, F.F. Abdel-latif, Highly efficient one-pot synthesis
of dihydropyran heterocycles, Chin. Chem. Lett. 25 (2014) 212–214;
Please cite this article in press as: Z. Zaheer, et al., Expeditious synthesis, antileishmanial and antioxidant activities of novel 3-