Journal of the American Chemical Society
between reactive positions adjacent to separate rings
AUTHOR INFORMATION
Page 4 of 5
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
entries 3, 5ꢁ6) or on the same ring (entries 1, 4, 7ꢁ8).
Corresponding Author
While cobaltꢁcatalyzed conditions were selective for the
heterobenzylic position in many cases, across the range
of substrates shown, ironꢁbased conditions were either
higher yielding or more selective—or both—in all cases.
As the heterocycle–iron interaction is disfavored by
steric congestion the oxidation systemsbegin to
converge, as would be expected (c.f. entry 2vs. 7 and8).
We have encountered two noteworthylimitations: As
*
Present Address
φDepartment of Chemistry, Colorado State University, Ft.
Collins, Colorado, USA 80523.
∝
Department of Chemistry, University of Calgary, 2500
University Dr NW, Calgary, Alberta, Canada, T2N 1N4
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
with many dioxygenꢁbased systems, Nꢁdealkylation of
ORCID
17
alkylamines is observed.
Strongly chelating
Jeffrey Van Humbeck: 0000ꢁ0002ꢁ8910ꢁ4820
substituents (e.g. 2ꢁacetamido) are not currently
tolerated.
Funding Sources
Finally, we were pleasedto see our conditions
Financial support was provided by MIT. J.C.C. holds an
NSF graduate fellowship (NSFꢁGRFP). R.K. was supported
on a graduate exchange fellowship by JGP, Kyoto
University.
wereamenableto
pharmaceuticalagent:
direct
the
modificationof
antiꢁmuscarinic
a
agent
tropicamide could be directly oxidized at the
heterobenzylic position (Scheme 3). Inaddition to the
carbonyl product (18, 55% yield), trapping ofan initial
oxidation product by cyclization also produces
aninteresting cyclized derivative (19, 11% yield).
Cobaltꢁcatalyzed conditions only resulted in substrate
acetylation.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
The organic and inorganic faculty at MITare thanked for
access to equipment, chemicals, and many helpful
discussions.
Scheme 3. Direct oxidation of tropicamide
REFERENCES
(
1)(a) Boger, D. L.; Miyauchi, H.; Hedrick, M. P.Bioorg. Med. Chem.
Lett. 2001,11, 1517. (b) Vitaku, E.; Smith, D. T.; Njardarson, J. T.J.
Med. Chem.2014,57, 10257.
(2)Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S.
W.Chem. Soc. Rev.2016,45, 546.
(
2
(
3)Baumann, M.; Baxendale, I. R.Beilstein J. Org. Chem.2013,9,
265.
4)(a) Obach, R. S.Pharmacol. Rev.2013,65, 578. (b) Genovino, J.;
Sames, D.; Hamann, L. G.; Touré, B. B.Angew. Chem., Int. Ed.
2016,55, 14218. (c) Caswell, J. M.; O’Neill, M.; Taylor, S. J. C.;
Moody, T. S.Curr. Opin. Chem. Biol. 2013,17, 271.
(
2
5)(a) Chen, K.; Zhang, P.; Wang, Y.; Li, H.Green Chem.2014,16,
344. (b) Allen, S. E.; Walvoord, R. R.; PadillaꢁSalinas, R.;
Given the reaction response to both catalyst
structures, we believe that CꢁH cleavage occurs by HAT
Kozlowski, M. C.Chem. Rev.2013,113, 6234. (c) Roduner, E.; Kaim,
W.; Sarkar, B.; Urlacher, V. B.; Pleiss, J.; Gläser, R.; Einicke, W.ꢁD.;
Sprenger, G. A.; Beifuß, U.; Klemm, E.; Liebner, C.; Hieronymus, H.;
Hsu, S.ꢁF.; Plietker, B.; Laschat, S.ChemCatChem 2013,5, 82.
1
2
from a metalꢁcoordinated heterocycle. The resulting
radical then delivers carbonyl products through an
1
8
autoxidation mechanism.
We have initiated
(
6)Batista, V. S.; Crabtree, R. H.; Konezny, S. J.; Luca, O. R.;
mechanistic studies to either support of oppose this
speculation, with the aim to increase reactivity toward
primary and tertiary positions, and understand factors
controlling chemoselectivity (i.e. production of
aldehydes vs. acids or tertiary alcohols vs. CꢁC bond
fragmentation). These results will be reported in due
course.
Praetorius, J. M.New J. Chem.2012,36.
(7)(a) Gardner, K. A.; Kuehnert, L. L.; Mayer, J. M.Inorg.
Chem.1997,36, 2069. (b) Baciocchi, E.; Crescenzi, M.; Lanzalunga,
O.J. Chem. Soc. Chem. Commun.1990, 687.
(
2
8)(a) Roberts, B. P.; Steel, A. J.J. Chem. Soc., Perkin Trans. 2 1994,
155. (b) Miao, C.; Zhao, H.; Zhao, Q.; Xia, C.; Sun, W.Catal. Sci.
Technol.2016,6, 1378.
(9)(a) Sterckx, H.; De Houwer, J.; Mensch, C.; Caretti, I.; Tehrani, K.
A.; Herrebout, W. A.; Van Doorslaer, S.; Maes, B. U. W.Chem. Sci.
2
016,7, 346. (b) De Houwer, J.; Abbaspour Tehrani, K.; Maes, B.
ASSOCIATED CONTENT
U.Angew. Chem., Int. Ed. 2012,51, 2745 (c) Sterckx, H.; De Houwer,
J.; Mensch, C.; Herrebout, W.; Tehrani, K. A.; Maes, B. U.Beilstein J.
Org. Chem.2016,12, 144.
The Supporting Information is available free of charge on
the
ACS
Publications
website
at
DOI:
(
10)(a) Howell, J. M.; Feng, K.; Clark, J. R.; Trzepkowski, L. J.;
10.1021/jacs.xxxxxxxxxx
White, M. C.J. Am. Chem. Soc.2015,137, 14590. (b) Lee, M.;
Sanford, M. S.Org. Lett. 2017,19, 572. (c) Lee, M.; Sanford, M. S.J.
Am. Chem. Soc. 2015,137, 12796. (d) Mbofana, C. T.; Chong, E.;
Lawniczak, J.; Sanford, M. S.Org. Lett. 2016,18, 4258.
Experimental procedures, optimization tables,GC
traces, and characterization data for new compounds
(PDF).
ACS Paragon Plus Environment