Aerobic Ligand-Free Suzuki Coupling Reaction of Aryl Chlorides
FULL PAPERS
J. Am. Chem. Soc. 1999, 121, 9550–9561; e) E. Negishi,
Handbook of Organopalladium Chemistry for Organic
Synthesis, Wiley-Interscience: New York, 2002, pp 249–
261; f) V. Farina, Adv. Synth. Catal. 2004, 346, 1553–
1582; g) H.-U. Blaser, A. Indolese, F. Naud, U. Net-
tekoven, A. Schnyder, Adv. Synth. Catal. 2004, 346,
1583–1598; h) A. F. Littke, G. C. Fu, Angew. Chem.
2002, 114, 4350–4386; Angew. Chem. Int. Ed. 2002, 41,
4176–4182.
sistant reductant. It is noteworthy that the reaction
can be performed efficiently at room temperature in
air, which is of great interest for industrial applica-
tion.
Experimental Section
General Information
[2] N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett.
1979, 3437–3440.
[3] V. V. Grushin, H. Alper, Chem. Rev. 1994, 94, 1047–
1062.
All aryl halides and arylboronic acids were used as received
(Alfa Aesar, Avocado). The PEG-400 was purchased from
Acros. All other chemicals were purchased from commercial
sources and used without further purification. 1H NMR
spectra were recorded on a Varian Inova 400 spectrometer.
Chemical shifts are reported in ppm relative to TMS. Mass
spectra were obtained using a GCT(EI, 70 eV). Gas chro-
matography analyses were performed on a Tianmei 7890
Gas Chromatograph with a FID and 50-meter OV-101
column. Transmission electron microscopy (TEM) was per-
formed on a Tecnai 20 microscope operating at 200 kV. All
products were isolated by short chromatography on a silica
gel (200–300 mesh) column using petroleum ether (60–
908C), unless otherwise noted. UV-vis spectroscopy meas-
urements (300–700 nm) were performed on a Bejing Rui Li
UV-2100 using quartz cells.
[4] a) F. Gonzµlez-Bobes, G. C. Fu, J. Am. Chem. Soc.
2006, 128, 5360–5361; b) S.-Y. Liu, M. J. Choi, G. C.
Fu, Chem. Commun. 2001, 2408–2409; c) A. F. Littke,
C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020–
4028; d) A. F. Littke, G. C. Fu, Angew. Chem. 1998,
110, 3586–3587; Angew. Chem. Int. Ed. 1998, 37, 3387–
3388.
[5] a) K. Billingsley, S. L. Buchwald, J. Am. Chem. Soc.
2007, 129, 3358–3366; b) T. E. Barder, S. D. Walker,
J. R. Martinelli, S. L. Buchwald, J. Am. Chem. Soc.
2005, 127, 4685–4696; c) H. N. Nguyen, X. Huang, S. L.
Buchwald, J. Am. Chem. Soc. 2003, 125, 11818–11819;
d) J. P. Wolfe, S. L. Buchwald, Angew. Chem. 1999, 111,
2570–2573; Angew. Chem. Int. Ed. 1999, 38, 2413–
2416.
[6] a) A. Zapf, R. Jackstell, F. Rataboul, T. Riermeier, A.
Monsees, C. Fuhrmann, N. Shaikh, U. Dingerdissen, M.
Beller, Chem. Commun. 2004, 38–39; b) S. Harkal, F.
Rataboul, A. Zapf, C. Fuhrmann, T. Riermeier, A.
Monsees, M. Beller, Adv. Synth. Catal. 2004, 346, 1742–
1748; c) A. Zapf, A. Ehrentraut, M. Beller, Angew.
Chem. 2000, 112, 4315–4317; Angew. Chem. Int. Ed.
2000, 39, 4153–4155; d) M. Gómez-Andreu, A. Zapf,
M. Beller, Chem. Commun. 2000, 2475–2476.
[7] a) W. A. Herrmann, K. Oefele, S. K. Schneider, E.
Herdtweck, S. D. Hoffmann, Angew. Chem. 2006, 118,
3943–3947; Angew. Chem. Int. Ed. 2006, 45, 3859–
3862; b) C. W. K. Gstçttmayr, V. P. W. Bçhm, E. Herdt-
weck, M. Grosche, W. A. Herrmann, Angew. Chem.
2002, 114, 1421–1423; Angew. Chem. Int. Ed. 2002, 41,
1363–1365.
General Procedure for the Suzuki Cross-Coupling of
Aryl Chlorides with Arylboronic Acids
A mixture of aryl chloride (0.5 mmol), arylboronic acid
(0.75 mmol), Pd(OAc)2 (2 mol%, 2.2 mg, 1 mol% for 4-
R
chloronitrobenzene), K2CO3 (1 mmol, 138 mg) and PEG-400
(4 g) was stirred at room temperature for the indicated time
until complete consumption of starting material as moni-
tored by GC. The mixture was added to brine (15 mL) and
extracted four times with diethyl ether (4 15 mL). The sol-
vent was concentrated under vacuum and the product was
isolated by short chromatography on a silica gel (200–300
mesh) column.
Supporting Information
Experimental details and characterization of the products
are given in the Supporting Information.
[8] a) R. B. Bedford, C. P. Butts, T. E. Hurst, P. Lidstrçm,
Adv. Synth. Catal. 2004, 346, 1627–1630; b) R. B. Bed-
ford, M. E. Blake, C. P. Craig, D. Holder, Chem.
Commun. 2003, 466–467; c) R. B. Bedford, S. L. Hazel-
wood, M. E. Limmert, D. A. Albisson, S. M. Draper,
P. N. Scully, S. J. Coles, M. B. Hursthouse, Chem. Eur. J.
2003, 9, 3216–3227; d) R. B. Bedford, C. S. J. Cazin,
S. L. Hazelwood, Angew. Chem. 2002, 114, 4294–4296;
Angew. Chem. Int. Ed. 2002, 41, 4120–4122; e) R. B.
Bedford, S. L. Hazelwood, M. E. Limmert, Chem.
Commun. 2002, 2610–2611.
[9] a) N. Marion, O. Navarro, J. Mei, E. D. Stevens, N. M.
Scott, S. P. Nolan, J. Am. Chem. Soc. 2006, 128, 4101–
4111; b) O. Navarro, R. A. Kelly, III, S. P. Nolan, J.
Am. Chem. Soc. 2003, 125, 16194–16195; c) G. A.
Grasa, M. S. Viciu, J. Huang, C. Zhang, M. L. Trudell,
S. P. Nolan, Organometallics 2002, 21, 2866–2873; d) C.
Acknowledgements
We thank the financial support from Dalian University of
Technology (No. 893336, 893222, 0204–888X43) and the
State Key Labof Fine Chemicals of China (No. KF0510). We
also thank Dr. Hongwei Yu for the valuable discussions.
References
[1] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–
2483; b) J. Hassan, M. SØvignon, C. Gozzi, E. Schulz,
M. Lemaire, Chem. Rev. 2002, 102, 1359–1469; c) A.
Suzuki, J. Organomet. Chem. 1999, 576, 147–168;
d) J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald,
Adv. Synth. Catal. 2008, 350, 501 – 508
ꢁ 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
507