Organic Letters
Letter
(8) (a) Matsui, K.; Takizawa, S.; Sasai, H. J. Am. Chem. Soc. 2005,
127, 3680−3681. (b) Wieting, J. M.; Fisher, T. J.; Schafer, A. G.; Visco,
M. D.; Gallucci, J. C.; Mattson, A. E. Eur. J. Org. Chem. 2015, 2015,
525−533. (c) Zhang, Y. D.; Li, N.; Qu, B.; Ma, S. L.; Lee, H.;
Gonnella, N. C.; Gao, J.; Li, W. J.; Tan, Z. L.; Reeves, J. T.; Wang, J.;
Lorenz, J. C.; Li, G. S.; Reeves, D. C.; Premasiri, A.; Grinberg, N.;
Haddad, N.; Lu, B. Z.; Song, J. H. J.; Senanayake, C. H. Org. Lett.
2013, 15, 1710−1713.
increases. This was also observed for the Friedel−Crafts and
Diels−Alder reactions presumably because the reactants are
more polar than the solvent and enhance the polarity of the
medium.
The effects of the two catalysts on the number-average
molecular weights (Mn,NMR) of the polymers at different
1
conversions were also investigated by H NMR. In all four
solvents, Mn,NMR was found to be similar at equivalent
conversions of the monomer regardless of the catalyst (Figure
(9) (a) Rueping, M.; Kuenkel, A.; Atodiresei, I. Chem. Soc. Rev. 2011,
40, 4539−4549. (b) Honjo, T.; Phipps, R. J.; Rauniyar, V.; Toste, F. D.
Angew. Chem., Int. Ed. 2012, 51, 9684−9688. (c) Held, F. E.; Grau, D.;
Tsogoeva, S. B. Molecules 2015, 20, 16103−16126.
(10) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348,
999−1010.
In summary, we successfully designed and synthesized two
electrostatically enhanced phosphoric acid derivatives (1 and
2). To the best of our knowledge, these compounds are the first
examples of phosphoric acids with positively charged centers
incorporated to enhance their acidities and catalytic abilities in
nonpolar media. This was evaluated by investigating a series of
acid-catalyzed processes and comparing the catalytic efficiencies
of 1 and 2 with diphenyl phosphate (DPP) and di(3-
nitrophenyl) phosphate (DPP*), their noncharged analogues.
Impressively, both charged phosphoric acid derivatives out-
performed DPP and DPP* in all of the reactions that were
examined, in some cases by more than 3 orders of magnitude.
Extension of this strategy to other Brønsted acid catalysts such
as chiral phosphoric acid derivatives is a promising research
avenue and currently is the focus of ongoing efforts in our
group.
(11) Wang, B. L.; Zhang, J. X.; Li, N. K.; Liu, G. G.; Shen, Q.; Wang,
X. W. Tetrahedron Lett. 2011, 52, 4671−4674.
(12) Takagi, R.; Kondo, A.; Ohkata, K. J. Mol. Catal. A: Chem. 2007,
278, 120−126.
(13) Makiguchi, K.; Ogasawara, Y.; Kikuchi, S.; Satoh, T.; Kakuchi, T.
Macromolecules 2013, 46, 1772−1782.
(14) Li, Y. H.; Lu, L. Q.; Das, S.; Pisiewicz, S.; Junge, K.; Beller, M. J.
Am. Chem. Soc. 2012, 134, 18325−18329.
(15) Kaupmees, K.; Tolstoluzhsky, N.; Raja, S.; Rueping, M.; Leito, I.
Angew. Chem., Int. Ed. 2013, 52, 11569−11572.
(16) Samet, M.; Buhle, J.; Zhou, Y. W.; Kass, S. R. J. Am. Chem. Soc.
2015, 137, 4678−4680.
(17) Fan, Y.; Kass, S. R. Org. Lett. 2016, 18, 188−191.
(18) Only small reactivity differences are expected for 4-N-
alkylpyridinium ion DPP derivatives since the negative charge in
their conjugate bases is not delocalized onto the aromatic rings.
(19) Nishida, H.; Takada, N.; Yoshimura, M.; Sonoda, T.; Kobayashi,
H. Bull. Chem. Soc. Jpn. 1984, 57, 2600−2604.
ASSOCIATED CONTENT
* Supporting Information
■
S
(20) Rosokha, S. V.; Stern, C. L.; Ritzert, J. T. CrystEngComm 2013,
15, 10638−10647.
(21) Scherer, A.; Mukherjee, T.; Hampel, F.; Gladysz, J. A.
Organometallics 2014, 33, 6709−6722.
The Supporting Information is available free of charge on the
(22) (a) Simon, L.; Goodman, J. M. J. Am. Chem. Soc. 2008, 130,
8741−8747. (b) Marcelli, T.; Hammar, P.; Himo, F. Chem. - Eur. J.
2008, 14, 8562−8571. (c) Yamanaka, M.; Hirata, T. J. Org. Chem.
2009, 74, 3266−3271.
Experimental procedures, NMR spectra, and reaction
AUTHOR INFORMATION
Corresponding Author
(23) Reichardt, C., Welton, T. Solvents and Solvent Effects in Organic
Chemistry, 4th ed.; Wiley-VCH: Weinheim, 2010.
■
(24) Burdick & Jackson Solvent Guide, 3rd ed.; Burdick & Jackson
Laboratories: Muskegon, MI, 1990.
(25) Nie, J.; Kobayashi, H.; Sonoda, T. Catal. Today 1997, 36, 81−
84.
(26) Makiguchi, K.; Satoh, T.; Kakuchi, T. Macromolecules 2011, 44,
Notes
The authors declare no competing financial interest.
1999−2005.
ACKNOWLEDGMENTS
■
(27) Kan, S. L.; Jin, Y.; He, X. J.; Chen, J.; Wu, H.; Ouyang, P. K.;
Guo, K.; Li, Z. J. Polym. Chem. 2013, 4, 5432−5439.
(28) Chen, J.; Kan, S. L.; Xia, H. D.; Zhou, F.; Chen, X.; Jiang, X. Q.;
Guo, K.; Li, Z. J. Polymer 2013, 54, 4177−4182.
We thank Ms. Deborah K. Schneiderman (University of
Minnesota) for helpful discussions. Generous support from the
National Science Foundation (CHE-1361766) and the
Petroleum Research Fund (556313-ND4) as administered by
the American Chemical Society is also gratefully acknowledged.
REFERENCES
■
(1) Akiyama, T. Chem. Rev. 2007, 107, 5744−5758.
(2) Yu, J.; Shi, F.; Gong, L. Z. Acc. Chem. Res. 2011, 44, 1156−1171.
(3) Rueping, M.; Koenigs, R. M.; Atodiresei, I. Chem. - Eur. J. 2010,
16, 9350−9365.
(4) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014,
114, 9047−9135.
(5) Liao, H. H.; Chatupheeraphat, A.; Hsiao, C. C.; Atodiresei, I.;
Rueping, M. Angew. Chem., Int. Ed. 2015, 54, 15540−15544.
(6) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299−4306.
(7) (a) Seebach, D.; Beck, A. K.; Heckel, A. Angew. Chem., Int. Ed.
2001, 40, 92−138. (b) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal,
V. H. Nature 2003, 424, 146. (c) Rueping, M.; Sugiono, E.; Moreth, S.
A. Adv. Synth. Catal. 2007, 349, 759−764.
D
Org. Lett. XXXX, XXX, XXX−XXX