570
X. Huang, J.-H. Wang
LETTER
Selenol esters14 are synthetically useful compounds as
precursors of acyl radicals and acyl cations. They can also
be easily converted into the corresponding acids, esters,
amides, ketones, aldehydes, and alkenyl selenides.15 In
particular, vinylic selenol esters are very versatile seleni-
um derivatives which can serve as good electron acceptors
to generate cleanly vinylic selenide anions under mild
conditions12a and other applications.12b However, accord-
ing to our knowledge, the only reported synthetic method
of vinylic selenol esters involved demethylation of vinylic
methyl selenides with excessive MeSeLi under severe
conditions or sodium in DMA, followed by carbonylation
of the produced vinylic selenide anions.12 In comparison,
our method is more attractive. It should be pointed out that
apart from the 1-alkynes employed in Scheme 1, various
internal alkynes, alkenes, functionalized alkynes and alk-
enes can proceed hydrozirconation reaction smoothly and
stereoselectively,16 moreover, all the reagents in Scheme
1 are commercially available, as a result, the present
method has provided a versatile, convenient route to vari-
ous selenol esters other than (E)-vinylic selenol esters.
(7) Sharpless, K. B.; Lauer, R. F.; Teranishi, A. Y. J. Am. Chem.
Soc. 1973, 95, 6137.
(8) Kozikowski, A. P.; Ames, A. J. Org. Chem. 1978, 43, 2735.
(9) Detty, M. R.; Wood, G. P. J. Org.Chem. 1980, 45, 80.
(10) (a)Comasseto, J. V. J. Organomet. Chem. 1983, 253, 131.
(b) Comasseto, J. V.; Ling, L. W.; Petragnani, N.; Stefani. H.
A. Synthesis 1997, 373.
(11) Wudl, F.; Nalewajek, D. J. Organomet. Chem. 1981, 217, 329.
(12) (a)Testaferri, L.; Tiecco, M.; Tingoli, M.; Chianelli, D.
Tetrahedron 1986, 42, 4577. (b)Testaferri, L.; Tiecco, M.;
Tingoli, M.; Chianelli, D. Tetrahedron 1986, 42, 63.
(13) Buchwald, S. L.; LaMaire, S. J.; Nielsen, R. B.; Watson, B. T.;
King, S. M. Tetrahedron Lett. 1987, 28, 3895.
(14) Recent reviews: (a)Ogawa, A.; Sonoda, N. in Comprehensive
Organic Synthesis; Trost, B. M. and Fleming, I. Ed.;
Pergamon: Oxford, 1991; Vol.6, p461-484. (b) Ogawa, A.;
Sonoda, N. in Comprehensive Organic Functional
Transformations; Katritzky, A. R.; Meth-Cohn, O.; Rees, C.
W. Ed.; Pergamon: Oxford, 1995; Vol.5, p231-255.
(15) See the references cited in Maeda, H.; Nishiyama, A.; Kambe,
N.; Sonoda, N.; Fujiwara, S.; Shin-ike, T. Synthesis 1997, 342.
(16) Reviews: (a)Schwartz, J.; Labinger, J. A. Angew. Chem. Int.
Ed. Engl. 1976, 15, 333. (b)Labinger, J. A. in Comprehensive
Organic Synthesis; Trost, B. M. and Fleming, I. Ed.;
Pergamon: Oxford, 1991; Vol.8; p667. (c)Wipf, P.; Jahn, H.
Tetrahedron 1996, 52, 12853. (d)Negishi, E.; Takahashi, T.
Synthesis 1988, 1. (e)Negishi, E.; Takahashi, T. Aldrich Acta
1985, 18, 31.
(17) Physical and spectroscopic data of (E)-3-(benzotriazol-1-yl)
propenyl acetyl selenide(3d): yellowish solid, mp 69-70 °C
(uncorrected). 1H NMR(CCl4, Hexamethyldisilane as the
internal standard): d8.06-7.93(m, 1H), 7.62-7.13(m, 3H),
6.93(d, 1H, J = 15.6Hz), 6.03(dt, 1H, J = 15.6 and 6.0Hz),
5.24(d, 2H, J = 6.0Hz), 2.30(s, 3H). IR(KBr) n[cm-1]:
1736(C = O), 1358, 1320, 1268, 1236, 1164, 1108, 976, 946,
738, 576. MS(m/z):282(m++1, 80Se). Anal. Calcd. for
C11H11N3OSe: C%, 46.98; H%, 3.91; N%, 15.00.
Acknowledgement
Projects 29672008 and 29772007 are supported by National Natural
Science Foundation of China.
References and Notes
(1) Huang, X.; Xu, X. Synth. Commun. 1998, 28, 807 and
references therein.
(2) Osuka, A.; Ohmasa, N.; Suzuki, H. Synthesis 1982, 857.
(3) Fukuzawa, S. I.; Nimoto, Y.; Fujinami, T.; Sakai, S.
Heteroatom. Chem. 1990, 49.
Found: C%, 47.18; H%, 3.59; N%, 15.11.
(4) Xu, X.; Huang, X. Synth. Commun. 1997, 27, 3797.
(5) Gautheron, B.; Tainturier, G.; Meunier, P. J. Organomet.
Chem. 1981, 209, C49.
Article Identifier:
(6) Gautheron, B.; Tainturier, G.; Pouly, S.; Theobald, F.; Vivier,
H.; Laarif, A. Organometallics 1984, 3, 1495.
1437-2096,E;1999,0,05,0569,0570,ftx,en;Y20098ST.pdf
Synlett 1999, No. 5, 569–570 ISSN 0936-5214 © Thieme Stuttgart · New York