14
A. DUTTA ET AL.
[10] Qiao, R. P.; Li, N.; Qi, X. H.; Wang, Q. S.; Zhuang, Y. Y. Degradation of Microcystin-RR
by UV Radiation in the Presence of Hydrogen Peroxide. Toxicon. 2005, 45, 745–752.
[11] Holz, K.; Lietard, J.; Somoza, M. M. High-Power 365 nm UV LED Mercury Arc Lamp
Replacement for Photochemistry and Chemical Photolithography. ACS Sustain. Chem.
[12] Chen, M. N.; Di, J. Q.; Li, J. M.; Mo, L. P.; Zhang, Z. H. Eosin Y-Catalyzed One-Pot
Synthesis of Spiro[4H-Pyran-Oxindole] Under Visible Light Irradiation, Tetrahedron.
[13] Zhang, M.; Fu, Q. Y.; Gao, G.; He, H. Y.; Zhang, Y.; Wu, Y. S.; Zhang, Z. H. Catalyst-
Free, Visible-Light Promoted One-Pot Synthesis of Spirooxindole-Pyran Derivatives in
Aqueous Ethyl Lactate. ACS Sustainable Chem. Eng. 2017, 5, 6175–6182. DOI: 10.1021/
[14] Zeitler, K. Photoredox Catalysis with Visible Light. Angew. Chem. Int. Ed. Engl. 2009, 48,
[15] Teply, F. Photoredox Catalysis by [ru(Bpy)3]2þ to Trigger Transformations of Organic
Molecules. Organic Synthesis Using Visible-Light Photocatalysis and Its 20th Century
[16] Narayanam, J. M. R.; Stephenson, C. R. J. Visible Light Photoredox Catalysis: Applications
[17] Tucker, J. W.; Stephenson, C. R. J. Shining Light on Photoredox Catalysis: Theory and
[18] Xuan, J.; Xiao, W. J. Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. Engl.
[19] Byrne, C.; Subramanian, G.; Pillai, S. C. Recent Advances in Photocatalysis for
Environmental Applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. DOI: 10.1016/j.
[20] Esser, P.; Pohlmann, B.; Scharf, H. D. The Photochemical Synthesis of Fine Chemicals
with Sunlight. Angew. Chem. Int. Ed. Engl. 1994, 33, 2009.
[21] Nongthombam, G. S.; Kharmawlong, G. K.; Kumar, J. E.; Nongkhlaw, R. L. UV365 Light
Promoted Catalyst-Free Synthesis of Pyrimido[4,5-b]Quinoline-2,4-Diones in Aqueous-
[22] El-Agrody, A. M.; Fouda, A. M.; Al-Dies, A. M. Studies on the Synthesis, in Vitro
Antitumor Activity of 4Hbenzo [h]Chromene,7H-Benzo[h]Chromene[2,3-d]Pyrimidine
Derivatives and Structure–Activity Relationships of the 2-,3- and 2,3-Positions. Med.
[23] Moreno-Manas, M.; Pleixats, R. Dehydroacetic Acid, Triacetic Acid Lactone, and Related
[24] Lee, J. S. Recent Advances in the Synthesis of 2-Pyrones. Mar. Drugs. 2015, 13,
[25] Sankpal, S.; Choudhari, P.; Kumbhar, S.; Phalle, S.; Deshmukh, M. One-Pot Synthesis and
Docking Study of Some Tetrahydrobenzo[b]Pyran Derivatives as Extended Spectrum Class
Lactamase Inhibitors for Urinary Tract Infection. Thai J. Pharm. Sci. 2016, 40, 190.
[26] Kumar, D.; Sharma, P.; Singh, H.; Nepali, K.; Gupta, G. K.; Jain, S. K.; Ntie-Kang, F. The
Value of Pyrans as Anticancer Scaffolds in Medicinal Chemistry. RSC Adv. 2017, 7,
[27] Toledo, M. A.; Pedregal, C.; Lafuente, C.; Diaz, N.; Martinez-Grau, M. A.; Jimenez, A.;
Benito, A.; Torrado, A.; Mateos, C.; Joshi, E. M.; et al. Discovery of a Novel Series of
Orally Active Nociceptin/Orphanin FQ (NOP) Receptor Antagonists Based on a
Dihydrospiro (Piperidine-4,70-Thieno[2,3-c]Pyran) Scaffold. J. Med. Chem. 2014, 57,
[28] Macaev, F. Z.; Sucman, N. S.; Pogrebnoi, S. I.; Logina, L. P.; Barba, A. N. Initial Synthesis
of Diastereomeric Pyran Spirooxoindolinones Based on (–)-Carvone and (þ)-3-Carene.