SCHEME 1
Convenient Synthesis of Oxazolidinones by
the Use of Halomethyloxirane, Primary
Amine, and Carbonate Salt
Yumiko Osa, Yuka Hikima, Yoko Sato, Kouichi Takino,
Yoshihiro Ida, Shuichi Hirono, and Hiroshi Nagase*
School of Pharmaceutical Sciences, Kitasato University,
5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
yields were not always high. As an improved method to
overcome the defects, cyclic carbamate synthesis by use
of carbon dioxide dissolved in protic solvents containing
amines and oxiranes was reported by Toda et al.9 When
primary amines reacted with halomethyloxiranes and a
large amount of carbon dioxide under neutral conditions,
six-membered cyclic carbamates of oxazinanones were
formed.10 They proposed a reaction mechanism by which
the ammonium carbamate intermediate reacted with
oxirane. They also used 2-(1-haloalkyl)oxirane and pri-
mary amine in the presence of cesium carbonate (Cs2-
CO3) and proposed a mechanism by which carbon dioxide
derived from Cs2CO3 reacted with the intermediate (2-
alkyl-3-aminomethyloxirane) to form oxazolidinone.11
However, these reactions did not give a high yield of
oxazolidinone.
Received January 26, 2005
Primary amines reacted with carbonate salts (Na2CO3, K2-
CO3, Cs2CO3, and Ag2CO3) and halomethyloxiranes in the
presence of a base such as DBU or TEA to give oxazolidi-
nones in high yields. The use of K2CO3 among these
carbonate gave the best yield in this synthesis. A reaction
mechanism was proposed that the oxazolidinone was ob-
tained from an oxazinanone intermediate via a bicyclo[2.2.1]
intermediate. The present reaction can be widely applied to
convenient synthesis of useful N-substituted oxazolidinones
and chiral oxazolidinones.
We have recently found a simple method to synthesize
oxazolidinone derivatives using primary amine and ha-
lomethyloxirane in the presence of various carbonate
salts. The reaction is shown in Scheme 1.
At the beginning of our research, we used allylamine
(1a, 2 molar equiv), which reacted with halomethyl-
oxirane (2, 2 molar equiv, bromomethyloxirane 2a, and
chloromethyloxirane 2b) in the presence of potassium
carbonate or silver carbonate (1 molar equiv) in methanol
at room temperature to afford oxazolidinone in 45% yield.
The structure of N-allyl-5-hydroxymethyloxazolidin-2-one
Oxazolidinones can be used as the precursors of
naturally occurring amino alcohols and amino acids
which have been synthesized by a variety of methods.1
In addition, they are useful as chiral auxiliaries2 in
asymmetric synthesis.1a Recently, some oxazolidinone
derivatives such as DUP-105,3 DUP-721,3 and linezolid
(Zyvox)3b,4 have attracted much interest as monodrug- or
multidrug-resistant antibacterial agents.5 Early synthe-
sis of oxazolidinones was carried out via the reactions of
1,2-amino alcohols and phosgene or its derivatives6 or
amino alcohols with carbon dioxide under high pressure.7
Recently, carbohydrate derivatives were also used in the
synthesis of oxazinanone and oxazolidinone.8 However,
these methods required multiple steps, and the total
(6) (a) Newman, M. S.; Kutner, A. J. J. Am. Chem. Soc. 1951, 73,
4199-4204. (b) Lubell, W.; Rapoport, H. J. Org. Chem. 1989, 54, 3824-
3831. (c) Bonner, M. P.; Thornton, E. R. J. Am. Chem. Soc. 1991, 113,
1299-1308. (d) Palomo, C.; Berree, F.; Lindent, A.; Villalgordo, J. M.
J. Chem Soc., Chem. Commun. 1994, 1861-1862. (e) Efskind, J.;
Romming, C.; Undheim, K. J. Chem. Soc., Perkin Trans. 1 1999, 1677-
1684.
(7) (a) Lynn. J. W. U. S. Patent 2,975,187, 1961; Chem. Abstr. 1961,
55, 16568. (b) Steele, A. B. U. S. Patent 2,868,801, 1959; Chem. Abstr.
1959, 53, 10261.
(8) (a) Hu, N. X.; Aso, Y.; Otsubo, T.; Ogura, F. J. Chem. Soc., Chem.
Commun. 1987, 1447-1448. (b) Lewis, N.; McKillop, A.; Taylor, R. J.
K.; Watson, R. J. Synth. Commun. 1995, 25, 561-568. (c) Li, G.;
Lenington, S.; Willis, S.; Kim, S. H. J. Chem. Soc., Perkin Trans. 1
1998, 1753-1754. (d) Feroci, M.; Inesi, A.; Mucciante, V.; Rossi, L.
Tetrahedron Lett. 1999, 40, 6059-6060. (d) Tanimori, S.; Kirihata, M.
Tetrahedron Lett. 2000, 41, 6785-6788. (e) Casadei, M. A.; Feroci, M.;
Inesi, A.; Rossi, L.; Sotgiu, G. J. Org. Chem. 2000, 65, 4759-4761. (f)
Caggiano, L.; Davies, J.; Fox, D. J.; Moody, D. C.; Warren, S. Chem.
Commun. 2003, 1650-1651. (g) Dinsmore, C. J.; Mercer, S. P. Org.
Lett. 2004, 6, 2885-2888. (i) Ella-Menye, J.-R.; Sharma, V.; Wang, G.
J. Org. Chem. 2005, 70, 463-469.
(9) (a) Toda, T. Chem. Lett. 1977, 957-958. (b) Saito, N.; Hatakeda,
K.; Ito, S.; Asano, T.; Toda, T. Heterocycles 1981, 15, 905-906. (c) Toda,
T. Nippon Kagaku Kaishi 1982, 2, 282-288. (d) Saito, N.; Hatakeda,
K.; Ito, S.; Asano, T.; Toda, T. Bull. Chem. Soc. Jpn. 1986, 59, 1629-
1631. (e) Toda, T.; Kitagawa, Y. Angew. Chem., Int. Ed. Engl. 1987,
26, 334-335. (f) Saito, N.; Hatakeda, K.; Ito, S.; Asano, T.; Namai, Y.;
Toda, T. Agric. Biol. Chem. 1987, 51, 1193-1194.
(10) (a) Asano, T.; Saito, N.; Ito, S.; Hatakeda, K.; Toda, T. Chem.
Lett. 1978, 311-312. (b) Saito, N.; Hatakeda, K.; Ito, S.; Asano, T.;
Toda, T. Nippon Kagaku Kaishi 1986, 9, 1196-1201.
(11) Yoshida, M.; Ohshima, M.; Toda, T. Heterocycles 1993, 35, 623-
626.
* To whom correspondence should be addressed. Tel: +81-3-5791-
6372. Fax: +81-3-4442-5707.
(1) (a) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96,
835-875. (b) Dyen, M. E.; Swern, D. Chem. Rev. 1967, 67, 197-246.
(2) (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981,
103, 2127-2129. (b) Evans, D. A. Aldrichim. Acta 1982, 15, 23-32.
(c) Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D.
J.; Bartroli, J. Pure. Appl. Chem. 1981, 53, 1109-1127.
(3) (a) Gregory, W. A.; Brittelli, D. R.; Wang, C.-L. J.; Wuonola, M.
A.; McRipley, R. J.; Eustice, D. C.; Eberly, V. S.; Bartholomew, P. T.;
Slee, A. M.; Forbes, M. J. Med. Chem. 1989, 32, 1673-1681. (b)
Gordeev, M. F. Curr. Opin. Drug Discovery Devel. 2001, 4, 450-461.
(c) Slee, A. M.; Wuonola, M. A.; McRipley, R. J.; Zajac, I.; Zawada, M.
J.; Bartholomew, P. T.; Gregory, W. A.; Forbes, M. Antimicrob. Agents
Chemothr. 1987, 31, 1791-1797.
(4) (a) Bolmstrom, A.; Ballow, C. H.; Qwarnstrom, A.; Biedenbach,
D. J.; Jones, R. N. Clin. Microbiol. Infec. 2002, 8, 791-800. (b)
Barbachyn, M. R.; Ford, C. W. Angew. Chem., Int. Ed. 2003, 42, 2010-
2023. (c) Wang, G.; Hollingsworth, R. I. Tetrahedron: Asymmetry 2000,
11, 4429-4432.
(5) Barbachyn, M. R.; Toops, D. S.; Grega, K. C.; Hendges, S. K.;
Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Shaadt, R. D.; Stapert, D.;
Yagi, B. H.; Buysse, J. M.; Demyan, W. F.; Kilburn, J. O.; Glickman,
S. E. Bioorg. Med. Chem. Lett. 1996, 6, 1009-1014.
10.1021/jo0501644 CCC: $30.25 © 2005 American Chemical Society
Published on Web 06/11/2005
J. Org. Chem. 2005, 70, 5737-5740
5737