Page 7 of 9
Journal of the American Chemical Society
There is strong support for Williams’s postulation of delo-
calized, cooperatively enhanced binding in biology. When
(10) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem. Int.
Ed. 2003, 42, 1210-1250.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
(
(
11) Hunter, C. A. Angew. Chem. Int. Ed. 2004, 43, 5310-5324.
12) Rebek, J. Angew. Chem. Int. Ed. 2005, 44, 2068-2078.
13) Vriezema, D. M.; Aragones, M. C.; Elemans, J.; Cornelissen, J.;
Rowan, A. E.; Nolte, R. J. M. Chem. Rev. 2005, 105, 1445-1489.
14) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A.
P. H. J. Chem. Rev. 2005, 105, 1491-1546.
streptavidin binds biotin, the melting point of the protein
host increases by 37 °C and numerous backbone amide pro-
2
3
tons become resistant to H/D exchange. In contrast to hun-
dreds or thousands preorganized synthetic receptors already
synthesized, very few CERs have been made by chemists.
Hopefully, the rational design of CERs will accelerate the de-
velopment of these biomimetic receptors and help chemists
create ultrastable host–guest complexes even when strong
direct host–guest interactions are unavailable—this could be
one of many of nature’s secrets in making the impossible pos-
sible. The electrostatic frustration illustrated in this work cer-
tainly is not the only strategy for CERs and additional designs
will emerge for sure as more researchers join this pursuit.
(
(15) Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J. L.;
Sanders, J. K. M.; Otto, S. Chem. Rev. 2006, 106, 3652-3711.
(16) Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Angew. Chem.
Int. Ed. 2007, 46, 2366-2393.
(
17) Serreli, V.; Lee, C. F.; Kay, E. R.; Leigh, D. A. Nature 2007, 445,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
5
23-527.
(18) Horne, W. S.; Gellman, S. H. Acc. Chem. Res. 2008, 41, 1399-
408.
1
(19) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem. Int.
Ed. 2009, 48, 3418-3438.
(20) Stoddart, J. F. Chem. Soc. Rev. 2009, 38, 1802-1820.
Cooperative enhancement and preorganization are not
mutually exclusive concepts in the design of supramolecular
(
(
21) Schneider, H. J. Angew. Chem. Int. Ed. 2009, 48, 3924-3977.
22) Ahn, Y.; Jang, Y.; Selvapalam, N.; Yun, G.; Kim, K. Angew.
Chem. Int. Ed. 2013, 52, 3140-3144.
27,28,30,31
receptors. All the previous CERs
and the ones re-
ported in this study all have a significant degree of preorgan-
ization, in the sense that some rigid scaffolds are used in the
construction of the receptor to avoid total flexibility, which
could be detrimental to both binding affinity and selectivity.
A fine balance of the two strategies will most likely be needed
for optimal complexes, as nature has amply demonstrated.
(
23) Williams, D. H.; Stephens, E.; O'Brien, D. P.; Zhou, M. Angew.
Chem. Int. Ed. 2004, 43, 6596-6616.
(24) Badjic, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.;
Stoddart, J. F. Acc. Chem. Res. 2005, 38, 723-732.
(
25) Otto, S. Dalton Trans. 2006, 2861-2864.
(26) Hunter, C. A.; Anderson, H. L. Angew. Chem. Int. Ed. 2009,
48, 7488-7499.
(
27) (a) Carrillo, R.; Feher-Voelger, A.; Martín, T. Angew. Chem. Int.
Ed. 2011, 50, 10616-10620. (b) Carrillo, R.; Morales, E. Q.;
Martín, V. S.; Martín, T. Chem. -Eur. J. 2013, 19, 7042-7048.
(c) Carrillo, R.; Morales, E. Q.; Martín, V. S.; Martín, T. J. Org.
Chem. 2013, 78, 7785-7795.
28) Zhao, Y. ChemPhysChem 2013, 14, 3878-3885.
29) Whitty, A. Nat. Chem. Biol. 2008, 4, 435-439.
30) (a) Rodriguez-Docampo, Z.; Pascu, S. I.; Kubik, S.; Otto, S. J.
Am. Chem. Soc. 2006, 128, 11206-11210. (b) Kubik, S.;
Goddard, R.; Kirchner, R.; Nolting, D.; Seidel, J. Angew. Chem.
Int. Ed. 2001, 40, 2648-2651.
ASSOCIATED CONTENT
Supporting Information
Experimental details for the syntheses and additional figures.
This information is available free of charge via the Internet at
http://pubs.acs.org.
(
(
(
AUTHOR INFORMATION
Corresponding Author
(31) Zhong, Z.; Li, X.; Zhao, Y. J. Am. Chem. Soc. 2011, 133, 8862-
8865.
(
(
32) Zhao, Y.; Zhong, Z. J. Am. Chem. Soc. 2005, 127, 17894-17901.
33) Cho, H.; Zhao, Y. J. Am. Chem. Soc. 2010, 132, 9890-9899.
(34) Zhao, Y.; Cho, H.; Widanapathirana, L.; Zhang, S. Acc. Chem.
Res. 2013, 46, 2763-2772.
Notes
The authors declare no competing financial interests.
(35) Zhao, Y. J. Org. Chem. 2009, 74, 834-843.
(
(
(
(
36) Li, Y. H.; Chan, L. M.; Tyer, L.; Moody, R. T.; Himel, C. M.;
Hercules, D. M. J. Am. Chem. Soc. 1975, 97, 3118-3126.
37) Ryu, E.-H.; Yan, J.; Zhong, Z.; Zhao, Y. J. Org. Chem. 2006, 71,
7205-7213.
ACKNOWLEDGMENT
We thank NSF (CHE-1303764) for financial support of the
research.
38) Zhao, Y.; Zhong, Z.; Ryu, E.-H. J. Am. Chem. Soc. 2007, 129,
218-225.
39) Chan, H. S.; Bromberg, S.; Dill, K. A. Philos. Trans. R. Soc.
London B 1995, 348, 61-70.
(40) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S.
Chem. Rev. 2001, 101, 3893-4012.
41) Creighton, T. E. Protein Structure: A Practical Approach, 2nd
Ed.; IRL Press: Oxford, 1997.
(42) Prince, R. B.; Saven, J. G.; Wolynes, P. G.; Moore, J. S. J. Am.
Chem. Soc. 1999, 121, 3114-3121.
43) If secondary electrostatic interactions, i.e., those between the
ammoniums and the more distant carboxylates in 3 and 6, are
considered, 6 should be favored over 3 because its para
carboxylates are closer to ammoniums on the guest than the
glutamate carboxylates in 3.
REFERENCES
(
(
1) Houk, K. N.; Leach, A. G.; Kim, S. P.; Zhang, X. Y. Angew.
Chem. Int. Ed. 2003, 42, 4872-4897.
2) Rekharsky, M. V.; Mori, T.; Yang, C.; Ko, Y. H.; Selvapalam, N.;
Kim, H.; Sobransingh, D.; Kaifer, A. E.; Liu, S.; Isaacs, L.; Chen,
W.; Moghaddam, S.; Gilson, M. K.; Kim, K.; Inoue, Y. Proc.
Natl. Acad. Sci. U. S. A. 2007, 104, 20737-20742.
(
(
(
3) Hogben, H. J.; Sprafke, J. K.; Hoffmann, M.; Pawlicki, M.;
Anderson, H. L. J. Am. Chem. Soc. 2011, 133, 20962-20969.
4) Cao, L. P.; Sekutor, M.; Zavalij, P. Y.; Mlinaric-Majerski, K.;
Glaser, R.; Isaacs, L. Angew. Chem. Int. Ed. 2014, 53, 988-993.
(
(
44) Grawe, T.; Schrader, T.; Zadmard, R.; Kraft, A. J. Org. Chem.
(5) Atwood, J. L.; Lehn, J. M. Comprehensive Supramolecular
Chemistry; Pergamon: New York, 1996.
2
002, 67, 3755-3763.
(45) Berger, M.; Schmidtchen, F. P. Angew. Chem. Int. Ed. 1998,
7, 2694-2696.
(
6) Steed, J. W.; Gale, P. A. Supramolecular Chemistry: From
Molecules to Nanomaterials; Wiley: Weinheim, 2012.
3
(
(
(
46) Linton, B. R.; Goodman, M. S.; Fan, E.; van Arman, S. A.;
Hamilton, A. D. J. Org. Chem. 2001, 66, 7313-7319.
47) Rekharsky, M.; Inoue, Y.; Tobey, S.; Metzger, A.; Anslyn, E. J.
Am. Chem. Soc. 2002, 124, 14959-14967.
(7) Cram, D. J. Angew. Chem. Int. Ed. Engl. 1986, 25, 1039-1057.
(8) Lehn, J. M. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4763-4768.
(
9) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100,
53-908.
8
48) Tobey, S. L.; Anslyn, E. V. J. Am. Chem. Soc. 2003, 125, 14807-
14815.
ACS Paragon Plus Environment