Please do not adjust margins
RSC Advances
Page 4 of 6
DOI: 10.1039/C6RA05293B
ARTICLE
Journal Name
benzoin radical cation
G
. Next,
which isomerises to
Figure 1c). The donation of an electron from
furnishes , which loses a proton produce the 1,2-diketone 2.
G
loses a proton to produce Royal Society and Newton Fund (UK) for the International
(detectable in EPR, Alumni Grant.
to Fe(III)
radical structure H 23
,
I
I
J
Notes and references
Finally, Fe(II) may be reoxidised to Fe(III) by oxygen in the
atmosphere (Scheme 4).
1
(a) J. Sun, Y. Wu, Y. Wang, Z. Liu, C. Cheng, K. J. Hartlieb, M.
R. Wasielewski and J. F. Stoddart, J. Am. Chem. Soc., 2015,
137, 13484; (b) R. Arumugaperumal, V. Srinivasadesikan, M.
V. R. Raju, M.-C. Lin, T. Shukla, R. Singh and H.-C. Lin, ACS
With the idea to support the proposed mechanism of the
oxidation process, the reactions was carried out in presence of
silica and MCM-41, which are material free of Fe(III). In both
case the benzyl 5a was obtained in 15% of yield after three
days of reaction. Thus, we assume that Fe(III) is responsible for
oxidation reaction. The heterogeneous redox processes was
demonstrated by an analysis post-reaction to identify Fe(III)
dissolved in toluene. In this case was not possible to identified
Fe(III) species by EPR. Finally, analysis of material after
reaction by EDS, showed the same elemental composition and
concentration weigh.
Appl. Mater. Interfaces, 2015,
Schäfer, P. Franchi, S. Silvi, E. Mezzina, A. Credi and M.
Lucarini, Chem. Open, 2015, , 18.
7, 26491; (c) V. Bleve, C.
4
2
3
(a) T. Pan and J. Liu, ChemPhysChem, 2016, DOI:
10.1002/cphc.201501063; (b) V. Blanco, D. A. Leigh and V.
Marcos, Chem. Soc. Rev., 2015, 44, 5341; (b) M. Schmittel,
Chem. Commun., 2015, 51, 14956; (c) H. Li and D.-H., Sci.
China. Chem., 2015, 58, 916.
(a) J. A. Terrett, J. D. Cuthbertson, V. W. Shurtleff and D. W.
C. MacMillan, Nature, 2015, 524, 330; (b) H. Shimakoshi and
Y. Hisaeda, Angew. Chem. Int. Ed., 2015, 54, 15439; (c) P. Liu,
X. Shao and W. Cai, Chin. J. Chem., 2015, 33, 1199; (d) G.
Fumagalli, P. T. G. Rabet, S. Boyd and M. F. Greaney, Angew.
Chem. Int. Ed., 2015, 54, 11481.
Fe(III)
Ar
Fe(II)
O
O
O
- H
Ar
Ar
Ar
Ar
Ar
1a
4
(a) Q. Zhang, X. Cui, L. Zhang, S. Luo, H. Wang and Y. Wu,
Angew. Chem. Int. Ed., 2015, 54, 5210; (b) S. Mortezaei, N. R.
Catarineu, X. Duan, C. Hu and J. W. Canary, Chem. Sci., 2015,
O
O
O
H
H
H
H
G
6
Serna and A. L. Nussbaumer, J. Am. Chem. Soc., 2014, 136
4905.
, 5904; (c) V. Blanco, D. A. Leigh, V. Marcos, J. A. Morales-
,
Detected by EPR
O
O
O
Ar
Ar
Ar
- H
5
6
(a) M. Galli, J. E. M. Lewis and S. M. Goldup, Angew. Chem.
Int. Ed., 2015, 54, 13545; (b) P. Neumann, H. Dib, A.-M.
Caminade and E. Hey-Hawkins, Angew. Chem. Int. Ed., 2015,
54, 311; (c) G.-H. Ouyang, Y.-M. He, Y. Li, J.-F. Xiang and Q.-H.
Fan, Angew. Chem. Int. Ed., 2015, 54, 4334.
(a) B. Zhu, R. Lee, J. Li, X. Ye, S.-N. Hong, S. Qiu, M. L. Coote
and Z. Jiang, Angew. Chem. Int. Ed., 2016, 55, 1299; (b) Z.-Y.
Wang, Y.-L. Ding, G. Wang and Y. Cheng Chem. Commun.,
2016, 52, 788; (c) Y. Wang, M. Sun, L. Yin and F. Shi, Adv.
Synth. Catal., 2015, 357, 4031; (d) A. Koizumi, M. Kimura, Y.
Ar
Ar
5a
Ar
O
O
O
H
H
J
Fe(II)
I
Fe(III)
Scheme 4. Proposed mechanism of oxidation process
3. Conclusions
In conclusion, we have shown that for a montmorillonite
clay modified with a super-acid, two different modes of
behaviour can take place simply by a judicious choice of
reaction conditions. The introduction of free radicals favours
the oxidation of benzoins, while the presence of a free radical
scavenger triggers the condensation of the same benzoins. EPR
experiments provide significant support in determining the
radical mechanism involved in the oxidation reaction. Several
side products were isolated and characterised to shed light on
the acid-base mechanism related to the synthesis of
tetrasubstituted furans through the condensation reaction.
This finding enriches the understanding of the behaviour of
such materials in organic reactions. Further application in
different organic reactions and synthesis studies to further
investigate the material properties reported here are currently
underway in our laboratory.
Arai, Y. Tokoro, and S. Fukuzawa, J. Org. Chem., 2015, 80
,
10883; (e) J. Kim, S.-W. Park, M.-H. Baik and S. Chang, J. Am.
Chem. Soc., 2015, 137, 13448; (f) R. B. Bedford, S. J. Durrant
and M. Montgomery, Angew. Chem. Int. Ed., 2015, 54, 8787;
(g) D. Wang, P. Cao, B. Wang, T. Jia, Y. Lou, M. Wang and J.
Liao, Org. Lett., 2015, 17, 2420; (h) Y. Kommagalla, V. B.
Mullapudi, F. Francis and C. V. Ramana, Catal. Sci. Technol.,
2015,
and R. S. Jolly, Catal. Sci. Technol., 2015,
5
, 114; (i) M. Pal, G. Srivastava, A. N. Sharma, S. Kaur
, 4017; (j) M.
5
Szostak, M. Spain, B. Sautier and D. J. Procter, Org. Lett.,
2014, 16, 5694; (k) C. Xu, W. Du, Y. Zeng, B. Dai and H. Guo,
Org. Lett., 2014, 16, 948.
K. Motokura, S. Matsunaga, A. Miyaji, T. Yashima and T.
Baba, Tetrahedron Lett., 2011, 52, 6687.
(a) L. O. Khafizova, M. G. Shaibakova, N. M. Chobanov, R. R.
Gubaidullin, T. V. Tyumkina, and U. M. Dzhemilev, Russ. J.
Org. Chem., 2015, 51, 1277; (b) C. R. Reddy, S. Z. Mohammed
and P. Kumaraswamy, Org. Biomol. Chem., 2015, 13, 8310;
(c) S. Mao, X.-Q. Zhu, Y.-R. Gao, D.-D. Guo and Y.-Q. Wang,
Chem. Eur. J., 2015, 21, 11335; (d) S. Mao, Y.-R. Gao, S.-L.
Zhang, D.-D. Guo and Y.-Q. Wang, Eur. J. Org. Chem. 2015,
876; (e) Y. Yang, F. Ni, W.-M. Shu and A.-X. Wu, Tetrahedron,
2014, 70, 6733; (f) B. Schickmous and J. Christoffers, Eur. J.
Org. Chem., 2014, 4410; (g) C. R. Reddy and M. D. Reddy, J.
Org. Chem., 2014, 79, 106.
7
8
4. Acknowledgements
The authors wish to acknowledge the SNI-CONACyT
(Sistema Nacional de Investigadores) for the distinction of
their membership and their stipend. JAMS is grateful to the
9
(a) S. Lei, G. Chen, Y. Mai, L. Chen, H. Cai, J. Tan and H. Caoa,
Adv. Synth. Catal., 2016, 358, 67; (b) C. Wang, S. Lei, H. Cao,
S. Qiu, J. Liu, H. Deng and C. Yan, J. Org. Chem., 2015, 80
,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins