selectivity compared with heterogeneous catalysts. See for example:
Table 2 Dehydrogenation of various alcohols (5.0 mL) with
20.5 mmol [RuCl2(p-cymene)]2–9 at 90 uC
J. S. M. Samec, J.-E. Ba¨ckvall, P. G. Andersson and P. Brandt, Chem.
Soc. Rev., 2006, 35, 237; S. Gladiali and E. Alberico, Chem. Soc. Rev.,
2006, 35, 226; S. Gladiali and E. Alberico, in Transition Metals in
Organic Synthesis Vol. 2, ed. M. Beller, C. Bolm, Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim, 2nd edn, 2004, pp 145–166.
5 A. Dobson and St. D. Robinson, Inorg. Chem., 1977, 16, 137;
W. K. Rybak and J. J. Ziolkowski, J. Mol. Catal., 1981, 11, 365;
C. W. Jung and P. E. Garrou, Organometallics, 1982, 1, 658;
G. B. W. L. Ligthart, R. H. Meijer, M. P. J. Donners, J. Meuldijk,
J. A. J. M. Vekemans and L. A. Hulshof, Tetrahedron Lett., 2003, 44,
1507.
TOFb/
212 h
VH2 /
mL6 h
TOFb/
h
216 h
a
a
VH2
mL2 h
/
Entry
1
Substrate
h
134
66
208
34
2
3
15
7.6
3.0
25
11
4.1
1.8
6.0
6 D. Morton and D. J. Cole-Hamilton, J. Chem. Soc., Chem. Commun.,
1988, 1154; D. Morton, D. J. Cole-Hamilton, D. Utuk, M. Paneque-
Sosa and M. Lopez-Poveda, J. Chem. Soc., Dalton Trans., 1989, 489.
7 L.-C. Yang, T. Ishida, T. Yamakawa and S. Shinoda, J. Mol. Catal.,
1996, 108, 87; T. Fujii and Y. Saito, J. Mol. Catal., 1991, 67, 185;
S. Shinoda, H. Itagaki and Y. Saito, J. Chem. Soc., Chem. Commun.,
1985, 860.
a
b
Gas burette. Calculated concerning to values measured by gas
burette.
ethanol also traces of methane as a second gaseous product could
be detected.
8 For other catalytic applications of these ligands see: R. Jackstell,
S. Harkal, H. Jiao, A. Spannenberg, C. Borgmann, D. Ro¨ttger,
F. Nierlich, M. Elliot, S. Niven, K. Cavell, O. Navarro, M. S. Viciu,
S. P. Nolan and M. Beller, Chem.–Eur. J., 2004, 10, 3891; A. Moballigh,
A. Seayad, R. Jackstell and M. Beller, J. Am. Chem. Soc., 2003, 125,
10311; A. Seayad, M. Ahmed, H. Klein, R. Jackstell, T. Gross and
M. Beller, Science, 2002, 297, 1676; K. Selvakumar, A. Zapf and
M. Beller, Org. Lett., 2002, 4, 3031; R. Jackstell, H. Klein, M. Beller,
K.-D. Wiese and D. Ro¨ttger, Eur. J. Org. Chem., 2001, 3871.
9 H. Junge and M. Beller, Tetrahedron Lett., 2005, 46, 1031.
10 J. Zhang, G. Leitus, Y. Ben-David and D. Milstein, J. Am. Chem. Soc.,
2005, 127, 10840; J. Zhang, M. Gandelmann, L. Shimon, H. Rozenberg
and D. Milstein, Organometallics, 2004, 24, 4026.
In conclusion, we have shown for the first time, that it is possible
to generate significant amount of hydrogen from alcohols in the
presence of in situ generated ruthenium–amine complexes.
Compared to previously known catalysts the presented complexes
are more easily available, more stable, and show improved
turnover frequencies for the dehydrogenation of isopropanol
below 100 uC. Interestingly, the catalyst systems are active for
more than 11 days, which has so far never achieved for such
reactions.
In addition, our catalyst systems might be also of interest for
transfer-hydrogenation reactions and the dynamic kinetic resolu-
tion processes of chiral alcohols.19 Work towards the further
improvement of the catalyst is in progress in our laboratories.
This work has been supported by the State of Mecklenburg-
Vorpommern, the BMBF, the DFG (Leibniz-prize), and the
Fonds der Chemischen Industrie (FCI). We thank Mrs A.
Lehmann, and Mrs S. Buchholz (all LIKAT) for their excellent
analytical support.
11 G. R. A. Adair and J. M. J. Williams, Tetrahedron Lett., 2005, 46, 8233.
12 J. H. Choi, N. Kim, Y. J. Shin, J. H. Park and J. Park, Tetrahedron
Lett., 2004, 45, 4607.
13 J. van Buijtenen, J. Meuldijk, J. A. J. M. Vekemans, L. A. Hulshof,
H. Kooijman and A. L. Spek, Organometallics, 2006, 25, 873.
14 J. Zhao and J. F. Hartwig, Organometallics, 2005, 24, 2441.
15 All experiments were carried out under an inert gas atmosphere (argon)
with exclusion of air. For the standard reaction procedure sodium is
dissolved in 4.0/8.0/38.0 mL of isopropanol at 90 uC in a double walled
thermostated reaction vessel. This vessel is vigorously purged with argon
to remove any hydrogen before starting the catalytic reaction.
Hexadecane, 0.5/1.0/4.0 mL, has been added as internal standard. The
solution containing the catalyst and the ligand in 1.0/2.0 mL isopropanol
is prepared in a Schlenk tube and added to the reaction vessel at 90 uC
via septa and a small teflon tube after refluxing became stationary.
Starting with the addition of the catalyst the progress of the reaction is
followed by several analytical methods. The amount of generated
hydrogen is measured by gas burette. In addition a hydrogen sensor of
the Fa. Hach Ultra Analytics GmbH is used for analysis of hydrogen
and a GC for analyzing gases is applied (gas chromatograph HP 5890,
permanent gases: Carboxen 1000, TCD, external calibration; alkanols,
aldehydes/ketones: HP Plot Q, 30 m, FID). Aldol condensation
products and hydrogenation of the aldol condensation products are
analyzed by gas chromatography (HP 1, 50 m, FID, internal standard).
Typically, the reproducibility of the volumetric determined hydrogen is
between 5–15%.
16 C. Carlini, M. D. Girolamo, A. Macinai, M. Marchionna, M. Noviello,
A. M. Raspolli Galletti and G. Sbrana, J. Mol. Catal., 2003, 204, 721.
17 C. Carlini, A. Macinai, M. Marchionna, M. Noviello, A. M.
Raspolli Galletti and G. Sbrana, J. Mol. Catal., 2003, 206, 409.
18 The energy content of hydrogen is calculated for the conversion H2 +
0.5 O2 A H2O in a fuel cell assuming 100% efficiency (lower heating
value: 33.33 kWh kg21).
19 W. Barratta, E. Herdtweck, K. Siega, M. Toniutti and P. Rigo,
Organometallics, 2005, 24, 1660; T. Riermeier, P. Gross, A. Monsees,
M. Hoff and H. Trauthwein, Tetrahedron Lett., 2005, 46, 3403;
M. Gomez, S. Jansat, G. Muller, G. Aullon and M. A. Maestro, Eur. J.
Inorg. Chem., 2005, 4341; A. S. Y. Yim and M. Wills, Tetrahedron,
2005, 61, 7994; G. Csjernyik, K. Bogar and J.-E. Ba¨ckvall, Tetrahedron
Lett., 2004, 45, 6799.
Notes and references
{ For ligand 6 values are not reproducible; in 5 experiments turnover
frequencies from 74 to 387 h21 after 2 h and 56 to 210 h21 after 6 h have
been obtained.
1 M. Eingartner, G. Eisenbeib and M. Fuchs, Wasserstoff part X,
Informationsschriften der VDI-Gesellschaft Energietechnik: Reihe
Regenerative Energien, VDI – GET, Du¨sseldorf, 1996; C.-J. Winter
and J. Nitsch, Wasserstoff als Energietra¨ger, Springer Verlag, Berlin,
1989.
2 M. R. Hoffmann, S. T. Martin, W. Choi and D. M. Bahnemann, Chem.
Rev., 1995, 95, 69; O. Legrini, E. Oliveros and A. M. Braun, Chem. Rev.,
1993, 93, 671; W. Gerhartz, C. Mayer, P. Monkhouse and
R. Pfefferkorn, Ullmanns Encyclopa¨die der technischen Chemie, Band
24, 4. Auflage, Verlag Chemie, Weinheim, 1983, pp 275–289.
3 Y. Ando, M. Yamashita and Y. Saito, Bull. Chem. Soc. Jpn., 2003, 76,
2045; J. Llorca, P. Ramirez de la Piscina, J.-A. Dalmon and N. Homs,
Chem. Mater., 2004, 16, 3573; D. K. Liguras, K. Goundani and
X. E. Verykios, Int. J. Hydrogen Energy, 2004, 29, 419; F. Aupretre,
C. Descorme and D. Duprez, Fr. Annal. Chim., 2001, 26, 93;
R. R. Davda and J. A. Dumesic, Angew. Chem., 2004, 116, 1575;
R. R. Davda and J. A. Dumesic, Chem. Commun., 2004, 36;
R. D. Cortright, R. R. Davda and J. A. Dumesic, Nature, 2002, 418,
964; R. R. Davda and J. A. Dumesic, Angew. Chem., 2003, 115, 4202,
(Angew. Chem., Int. Ed, 2003, 42, 3971).
4 At this point it should be noted that dehydrogenation reactions in the
presence of hydrogen acceptors, e.g. transfer-hydrogenations, are often
performed with homogeneous catalysts due to their higher activity and
524 | Chem. Commun., 2007, 522–524
This journal is ß The Royal Society of Chemistry 2007