1392
Rui Ma et al. / Chinese Journal of Catalysis 39 (2018) 1384–1394
5). The CO2 and NH3‐TPD analyses (Fig. S2) suggest that the
surface of the catalyst treated by NaOH solution in the DP
method contained more acidic and basic sites compared to the
catalyst treated by the impregnation method. The number of
acidic and basic sites on the Pd/Mg3Al‐MMODP catalyst surface
was 86 μmolNH3/g and 214 μmolCO2/g respectively, and the
molar ratio of acid/base (ca. 0.4) is located at the peak of the
obtained volcano curve (Fig. 5). Moreover, the obtained
Pd/Mg3Al‐MMODP catalyst also exhibited an enhanced hydro‐
genation ability of MO, as shown in Table 5, which is also fa‐
vorable for improved MIBK yield. Furthermore, the
Pd/Mg3Al‐MMODP catalyst possessed fairly good stability over 4
cycling reactions (Fig. 7). Therefore, the Pd/Mg3Al‐MMODP mul‐
tifunctional catalysts can be considered as efficient and envi‐
References
[1] A. Corma, S. Iborra, A. Velty, Chem. Rev., 2007, 107, 2411–2502.
[2] E. L. Kunkes, D. A. Simonetti, R. M. West, J. C. Serrano‐Ruiz, C. A.
Gärtner, J. A. Dumesic, Science, 2008, 322, 417–421.
[3] M. Martínez‐Ortiz, D. Tichit, P. Gonzalez, B. Coq, J. Mol. Catal. A,
2003, 201, 199–210.
[4] H. R. Yue, Y. J. Zhao, X. B. Ma, J. L. Gong, Chem. Soc. Rev., 2012, 41,
4218–4244.
[5] N. Yan, C. Zhao, C. Luo, P. J. Dyson, H. C. Liu, Y. Kou, J. Am. Chem.
Soc., 2006, 128, 8714–8715.
[6] M. J. Climent, A. Corma, A. Iborra, M. J. Sabater, ACS Catal., 2014, 4,
870–891.
[7] W. Wang, S. P. Wang, X. B. Ma, J. L. Gong, Chem. Soc. Rev., 2011, 40,
3703–3727.
ronmentally friendly heterogeneous catalysts, showing
a
[8] A. Corma, M. Boronat, M. J. Climent, S. Iborra, R. Montón, M. J. Sa‐
bater, Phys. Chem. Chem. Phys., 2011, 13, 17255–17261.
[9] K. Weissermel, H. J. Arpe, Industrial Organic Chemistry, fourth ed.
Wiley‐VCH, Weinheim, 2003.
promising prospect in the industrial application of the one‐pot
synthesis of MIBK from acetone.
4. Conclusions
[10] D. S. Abrams, J. M. Prausnitz, AIChE J., 1975, 21, 116–128.
[11] S. Wang, K. H. Yin, Y. C. Zhang, H. C. Liu, ACS Catal., 2013, 3,
2112–2121.
In this paper, we systematically studied the synergistic ef‐
fect of the nature, density, and proximity of
basic/acidic/metallic sites on multifunctional catalysts for the
one‐pot synthesis of MIBK from acetone. The catalytic perfor‐
mance of various Pd/acid and Pd/base bifunctional catalysts
suggests that the strength of acidity and basicity on the cata‐
lysts plays a significant role in the specific steps in the tandem
reaction. In addition, we found that the catalytic properties of
the multifunctional catalysts were more than just a superposi‐
tion of acidic and basic sites. Further research on the influence
of the density of acidic/basic sites was then carried out by ad‐
justing the ratio of Mg/Al to achieve the continuous change in
the number of acidic and basic sites, and it was revealed that
the maximum yield of MIBK was obtained by the multifunc‐
tional Pd/Mg3Al‐MMO with 0.1% Pd loading and 0.4 acid‐
ic/basic molar ratio. Moreover, the proximity test indicated
that the intimate and continuous active sites could shorten the
diffusion time of intermediate species from each active site,
leading to the maximum efficiency of the tandem reaction. No‐
tably, the optimal Pd/Mg3Al‐MMODP catalyst with 37.2% MIBK
yield exhibited good stability over four recycling tests.
[12] M. Q. Zhao, R. M. Crooks, Angew. Chem. Int. Ed., 1999, 38, 364–366.
[13] M. D’Arino, F. Pinna, G. Strukul, Appl. Catal. B, 2004, 53, 161–168.
[14] S. Mandal, D. Roy, R. V. Chaudhari, M. Sastry, Chem. Mater., 2004,
16, 3714–3724.
[15] M. Adlim, M. A Bakar, K. Y. Liew, J. Ismail, J. Mol. Catal. A, 2004,
212, 141–149.
[16] K. H. Lin, A. N. Ko, Appl. Catal. A, 1996, 147, 259–265.
[17] P. Wang, S. Y. Bai, J. Zhao, P. P. Su, Q. H. Yang, C. Li, ChemSusChem,
2012, 5, 2390–2396.
[18] R. D. Hetterley, E. F. Kozhevnikova, I. V. Kozhevnikov, Chem. Com‐
mun., 2006, 782–784.
[19] S. M. Yang, Y. M. Wu, Appl. Catal. A, 2000, 192, 211–220.
[20] Y. Higashio, T. Nakayama, Catal. Today, 1996, 28, 127–131.
[21] Y. Z. Chen, B. J. Liaw, H. R. Tan, K. L. Shen, Appl. Catal. A, 2001, 205,
61–69.
[22] J. T. Feng, Y. F. He, Y. N. Liu, Y. Y. Du, D. Q. Li, Chem. Soc. Rev., 2015,
44, 5291–5319.
[23] Q. Wang, D. O’Hare, Chem. Rev., 2012, 112, 4124–4155.
[24] Q. Wang, H. H. Tay, D. J. W. Ng, L. W. Chen, Y. Liu, J. Chang, Z. Y.
Zhong, J. Z. Luo, A. Borgna, ChemSusChem, 2010, 3, 965–973.
[25] Q. Wang, D. O’Hare, Chem. Commun., 2013, 49, 6301–6303.
[26] S. P. Wang, S. L. Yan, X. B. Ma, J. L. Gong, Energy Environ. Sci., 2011,
4, 3805–3819.
100
Ace con
MIBK sel
[27] Y. N. Liu, J. Y. Zhao, Y. F. He, J. T. Feng, T. Wu, D. Q. Li, J. Catal., 2017,
348, 135–145.
DAA sel
80
MO sel
IPA sel
[28] E. Pérez‐Barrado, M. C. Pujol, M. Aguiló, J. Llorca, Y. Cesteros, F.
Díaz, J. Pallarès, L. F. Marsal, P. Salagre, Chem. Eng. J., 2015, 264,
547–556.
60
40
20
0
[29] N. Das, D. Tidier, R. Durand, P. Graffin, B. Coq, Catal. Lett., 2001, 71,
181–185.
[30] M. J. Martínez‐Ortiz, D. Tichit, P. Gonzalez, B. Coq, J. Mol. Catal. A,
2003, 201, 199–210.
[31] A. A. Nikolopoulos, B. W. L. Jang, J. J. Spivey, Appl. Catal. A, 2005,
296, 128–136.
4th run
Fig. 7. Reusability of the Pd/Mg3Al‐MMODP catalyst.
2nd run
3rd run
1st run
[32] F. Winter, A. J. Dillen, K. P. de Jong, J. Mol. Catal. A, 2004, 219,
273–281.
[33] E. M. Köck, M. Kogler, T. Bielz, B. Klözer, S. Penner, J. Phys. Chem. C,