acetone,5a,7b,c hydrogen peroxide,5b or molecular oxygen5c
were reported; however, there is much room for improvement
of the catalytic activity and selectivity. We now disclose a
new efficient method using a novel metal-ligand bifunc-
tional catalyst and acetone or 2-butanone as a cooxidant.
This method is high-yielding, clean, operationally simple,
and chemoselective. Therefore, it meets the standards for
the contemporary of organic synthesis.
Table 1. Oxidative Lactonization of Diols Catalyzed by an Ir
Catalyst 4a
6
,7
Treatment of a mixture of pentamethylcyclopentadienyl-
8
9
iridium chloride dimer [Cp*IrCl
2 2
] and 2,2-diphenylglycinol
in CH Cl with aqueous KOH solution at room temperature
2
2
for 30 min under argon afforded the dark red Ir catalyst in
quantitative yield. Thus, when a 1 M solution of 1,2-bis-
(hydroxymethyl)benzene (1a) in dry acetone (13.6 mol equiv)
containing the Ir catalyst (S/C ) 200) was stirred at room
temperature for 4 h, phthalide (2a) was obtained in quantita-
10
tive yield. The reaction of 1a using reagent grade of acetone
proceeds equally well, giving the lactone quantitatively
(Scheme 2).
Scheme 2
A variety of 1,4- or 1,5-diols can be transformed to the
corresponding lactones in high yield (Table 1). The reactions
of 1b-d gave corresponding lactones without epimerization.
In the case of unsymmetrical diol 1g and 1h, the less hindered
(
5) (a) Metal polyhydrides-acetone: Lin, Y.; Zhu, X.; Zhou, Y. J.
Organomet. Chem. 1992, 429, 269-274. (b) Heteropolyacid-H2O2: Ishii,
Y.; Yoshida, T.; Yamawaki, K.; Ogawa, M. J. Org. Chem. 1988, 53, 5549-
5
552. (c) Pd(OAc)2-O2: Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S.
J. Org. Chem. 1999, 64, 6750-6755.
a
(
6) For asymmetric transfer hydrogenation using a metal-ligand bifunc-
Unless otherwise stated, the reaction was carried out at room
6
tional catalyst, see: RuCl(Tsdpen)(µ -arene): (a) Hashiguchi, S.; Fujii, A.;
temperature using a 1.0 M solution of diol (1.0 mmol) in acetone. Diol/Ir
) 200:1. Isolated yield. c Reaction using 50 g of 1e in 140 mL of
b
Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 7562-
d
7
563. (b) Takehara, J.; Hashiguchi, S.; Fujii, A.; Inoue, S.; Ikariya, T.;
2-butanone (4.0 M) under reflux with S/C ) 1000. Reaction using a 2.0
M acetone solution. e The reaction was carried out using a 0.25 M solution
Noyori, R. Chem. Commun. 1996, 233-234. (c) Fujii, A.; Hashiguchi, S.;
f
1
Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521-
of 1g in CH3CN containing 4 molar equiv of acetone. Determined by H
2
522. (d) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J.
Am. Chem. Soc. 1996, 118, 4916-4917. (e) Haack, K.-J.; Hashiguchi, S.;
NMR.
Fujii, A.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36,
2
85-288. (f) Hashiguchi, S.; Fujii, A.; Haack, K.-J.; Matsumura, K.; Ikariya,
T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 288-290. (g)
Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.
hydroxyl groups were oxidized selectively to give 2g and
2
h. The reaction of 1,4-pentanediol (1f) gave γ-valerolactone
1
1
3
997, 119, 8738-8739. (h) Noyori, R.; Hashiguchi, S. Acc. Chem. Res.
997, 30, 97-102. (i) Yamada, I.; Noyori, R. Org. Lett. 2000, 2, 3425-
427. (j) Yamakawa, M.; Yamada, I.; Noyori, R. Angew. Chem., Int. Ed.
(2f) in 88% yield. 2-(3-Hydroxypropyl)phenol (1j) also
afforded 2j in 95% yield.
Since transfer hydrogenation of ketones is reversible, a
substrate concentration as low as 0.1 M is required for ob-
taining high yield in the transfer hydrogenation of aceto-
phenone in 2-propanol (2-propanol/ketone substrate )
Engl. 2001, 40, 2818-2821. (k) Noyori, R.; Yamakawa, M.; Hashiguchi,
S. J. Org. Chem. 2001, 66, 7931-7944. Cp*MCl(Tsdiamine) (M ) Rh,
Ir): (l) Mashima, K.; Abe, T.; Tani, K. Chem. Lett. 1998, 1199-1200. (m)
Mashima, K.; Abe, T.; Tani, K. Chem. Lett. 1998, 1201-1202. (n) Murata,
K.; Ikariya, T.; Noyori, R. J. Org. Chem. 1999, 64, 2186-2187. (o) Mao,
J.; Baker, D. C. Org. Lett. 1999, 1, 841-843.
2362
Org. Lett., Vol. 4, No. 14, 2002