Journal of the American Chemical Society
Communication
(13) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.;
mol % Pd) afforded phenol quantitatively from cyclohexenone in
36 h in DMSO at 100 °C. During the course of this reaction, a
black precipitate formed due to the degradation of the catalyst.
After removal of all the volatiles in vacuo, the remaining residue
from the homogeneous reaction did not exhibit any catalytic
activity for the dehydrogenation of cyclohexenone. In contrast,
bpy-UiO-Pd was recycled and reused twice in this reaction (first
run, 93%; second run, 91%; third run, 79%). The bpy-UiO-Pd
catalyst recovered from the dehydrogenation showed the same
PXRD pattern as the as-prepared bpy-UiO-Pd (Figure 1e),
indicating that the bpy-UiO-Pd catalyst is stable under the
catalytic conditions.
In summary, we have developed a straightforward post-
synthetic metalation strategy to prepare highly active single-site
solid catalysts based on a UiO-type MOF bearing the bipyridyl
moiety. The bpy-UiO-Ir and bpy-UiO-Pd catalysts not only show
much enhanced (up to at least 1250 times) catalytic activities
compared to their homogeneous analogues but also exhibit
higher stability and can be readily reused for a broad scope of
important organic transformations. Our current work is focused
on extending this method to develop other bpy-UiO based
transition metal catalysts that can potentially be used in the
practical synthesis of fine chemicals.
Couvreur, P.; Fer
1232.
́
ey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112,
(14) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012,
112, 782.
(15) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch,
E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112, 724.
(16) Wang, C.; Liu, D.; Lin, W. J. Am. Chem. Soc. 2013, 135, 13222.
(17) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.;
Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
(18) Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248.
(19) Ma, L.; Falkowski, J. M.; Abney, C.; Lin, W. Nat. Chem. 2010, 2,
838.
(20) Song, F.; Wang, C.; Falkowski, J. M.; Ma, L.; Lin, W. J. Am. Chem.
Soc. 2010, 132, 15390.
(21) Kong, G.-Q.; Ou, S.; Zou, C.; Wu, C.-D. J. Am. Chem. Soc. 2012,
134, 19851.
(22) Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196.
(23) Zhu, C.; Yuan, G.; Chen, X.; Yang, Z.; Cui, Y. J. Am. Chem. Soc.
2012, 134, 8058.
(24) Genna, D. T.; Wong-Foy, A. G.; Matzger, A. J.; Sanford, M. S. J.
Am. Chem. Soc. 2013, 135, 10586.
(25) Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011,
133, 13445.
(26) Wang, C.; Wang, J.-L.; Lin, W. J. Am. Chem. Soc. 2012, 134, 19895.
(27) Tanabe, K. K.; Siladke, N. A.; Broderick, E. M.; Kobayashi, T.;
Goldston, J. F.; Weston, M. H.; Farha, O. K.; Hupp, J. T.; Pruski, M.;
Mader, E. A.; Johnson, M. J. A.; Nguyen, S. T. Chem. Sci. 2013, 4, 2483.
(28) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.;
Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850.
(29) Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.;
Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Chem.
Mater. 2010, 22, 6632.
(30) Bloch, E. D.; Britt, D.; Lee, C.; Doonan, C. J.; Uribe-Romo, F. J.;
Furukawa, H.; Long, J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2010, 132,
14382.
(31) During the preparation and revision of this manuscript, the use of
bpy-UiO in gas storage, pollutant removal, and catalysis was reported.
See: (a) Li, L.; Tang, S.; Wang, C.; Lv, X.; Jiang, M.; Wu, H.; Zhao, X.
Chem. Commun. 2014, 50, 2304. (b) Nickerl, G.; Leistner, M.; Helten,
S.; Bon, V.; Senkovska, I.; Kaskel, S. Inorg. Chem. Front. 2014, doi:
10.1039/c3qi00093a. (c) Fei, F.; Cohen, S. M. Chem. Commun. 2014,
50, 4810.
ASSOCIATED CONTENT
* Supporting Information
■
S
General experimental section; synthesis and characterization of
MOFs; procedures for catalytic reactions; GC analysis
conditions for all products. This material is available free of
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
†Z.M. and T.Z. contributed equally.
Notes
The authors declare no competing financial interest.
(32) Cohen, S. M. Chem. Rev. 2011, 112, 970.
(33) Dau, P. V.; Kim, M.; Cohen, S. M. Chem. Sci. 2013, 4, 601.
(34) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M. R.
Science 2002, 295, 305.
(35) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.;
Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390.
ACKNOWLEDGMENTS
■
This work was supported by the NSF (CHE-1111490) and
startup funds from the University of Chicago. We thank Dr.
Cheng Wang, Carter W. Abney, Christopher Poon, and Kuangda
Lu for experimental help.
(36) Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem.,
Int. Ed. 2002, 41, 3056.
(37) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829.
(38) Maleczka, R. E.; Shi, F.; Holmes, D.; Smith, M. R. J. Am. Chem. Soc.
2003, 125, 7792.
(39) Murphy, J. M.; Liao, X.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129,
15434.
(40) Tzschucke, C. C.; Murphy, J. M.; Hartwig, J. F. Org. Lett. 2007, 9,
761.
(41) Beck, E. M.; Hatley, R.; Gaunt, M. J. Angew. Chem., Int. Ed. 2008,
47, 3004.
(42) Kikuchi, T.; Nobuta, Y.; Umeda, J.; Yamamoto, Y.; Ishiyama, T.;
Miyaura, N. Tetrahedron 2008, 64, 4967.
(43) Simmons, E. M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 17092.
(44) Jones, G. R.; Landais, Y. Tetrahedron 1996, 52, 7599.
(45) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835.
(46) Izawa, Y.; Pun, D.; Stahl, S. S. Science 2011, 333, 209.
(47) Izawa, Y.; Zheng, C.; Stahl, S. S. Angew. Chem., Int. Ed. 2013, 52,
3672.
REFERENCES
■
(1) C. Constable, E.; J. Steel, P. Coord. Chem. Rev. 1989, 93, 205.
(2) Kaes, C.; Katz, A.; Hosseini, M. W. Chem. Rev. 2000, 100, 3553.
(3) Chelucci, G.; Thummel, R. P. Chem. Rev. 2002, 102, 3129.
(4) Newkome, G. R.; Patri, A. K.; Holder, E.; Schubert, U. S. Eur. J. Org.
Chem. 2004, 2004, 235.
(5) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.;
Hartwig, J. F. Chem. Rev. 2009, 110, 890.
(6) Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864.
(7) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851.
(8) Sigman, M. S.; Werner, E. W. Acc. Chem. Res. 2012, 45, 874.
(9) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402,
276.
(10) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629.
(11) Kitagawa, S.; Kitaura, R.; Noro, S.-i. Angew. Chem., Int. Ed. 2004,
43, 2334.
(12) Das, M. C.; Xiang, S.; Zhang, Z.; Chen, B. Angew. Chem., Int. Ed.
2011, 50, 10510.
6569
dx.doi.org/10.1021/ja5018267 | J. Am. Chem. Soc. 2014, 136, 6566−6569