3964
J . Org. Chem. 1999, 64, 3964-3968
Regioselective Hyd r ofor m yla tion of En yn es Ca ta lyzed by a
Zw itter ion ic Rh od iu m Com p lex a n d Tr ip h en yl P h osp h ite
Bernard G. Van den Hoven and Howard Alper*
Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
Received December 10, 1998
The reaction of aliphatic 1-en-3-ynes with synthesis gas in the presence of the zwitterionic rhodium
complex (η6-C6H5BPh3)-Rh+(1,5-COD) and triphenyl phosphite affords formyl dienes in high
stereoselectivity. This catalytic system provides a useful method for the hydroformylation of both
nonfunctionalized and functionalized conjugated enynes under mild conditions, affording formyl
dienes in moderate to good yields.
In tr od u ction
enynes is an attractive synthetic route for the preparation
of formyl dienes, an interesting subgroup of substituted
dienes used in the preparation of cyclized materials and
as chain extensions.8 Enynes may be prepared through
a variety of methods including the reaction of an alkyne
with various organometallic species, affording acetylenes
bearing alkyl, vinyl, aryl, or heteroaryl groups R to the
triple bond.9a More recent methods have been developed
using palladium and tris(2,6-dimethoxyphenyl)phosphine
to self-couple terminal alkynes or cross-couple terminal
alkynes to functionalized internal alkynes.9b
The use of rhodium-based catalysts for the hydro-
formylation of alkenes is well documented. In recent
years, the zwitterionic complex (η6-C6H5BPh3)-Rh+(1,5-
COD) (1) has been shown to be capable of hydrogenating
imines,10 hydroformylating alkenes,11 germylformylating
and silylformylating terminal alkynes,12,13 and polymer-
izing phenyl acetylene.14
The hydroformylation of alkenes is an important
industrial process which has been extensively investi-
gated for many years.1 In contrast, the hydroformylation
of alkynes to give R,â-unsaturated aldehydes has at-
tracted less attention until recently, since past research
resulted in poor product yields and selectivities.2
In 1995, Buchwald and co-workers3 reported an effec-
tive hydroformylation catalyst composed of Rh(CO)2acac
(acac ) acetylacetonate) and a sophisticated bisphosphite
ligand. This catalyst system enabled the hydroformyla-
tion of internal alkynes to occur under mild conditions
and with good selectivity. Last year, Hidai and co-
workers4 reported a heterobimetallic catalyst to hydro-
formylate internal acetylenes. The conditions used by
Hidai and co-workers were not as mild as those of
Buchwald, although the conversion and selectivity were
good. The Hidai group described the hydroformylation
of the conjugated enyne (Z)-1,4-diphenyl-1-buten-3-yne
to form (2E,4Z)-2,5-diphenyl-2,4-pentadienal as the ex-
clusive hydroformylation product in 80% conversion and
39% isolated yield. Doyama and others5a,b noted that
when an alkyne is conjugated to an alkene, the triple
bond is more reactive toward hydroformylation. Conju-
gated enynes undergo hydroformylation giving formyl
dienes in either a linear or branched fashion.
We now describe the use of catalytic quantities of 1,
in the presence of triphenyl phosphite, to attain the
Enynes find practical use in the preparations of
polymers6a and substituted benzenes6b and in enediyne
antibiotics.7 The catalytic hydroformylation of conjugated
(6) (a) Xu, W.; Alper, H.; Macromolecules 1996, 29, 6695-6699. (b)
Gevorgyan, V.; Takeda, A.; Yamamoto, Y. J . Am. Chem. Soc. 1997,
119, 11313-11314.
(7) Stang, P. J .; Diederich, F. Chapter 7. In Modern Acetylene
Chemistry; VCH Publishers: New York, 1995.
(8) (a) O′Shea, D. F.; Sharp, J . T. J . Chem. Soc., Perkins Trans. 1,
1997, 3025-3034. (b) Kimura, M.; Ezoc, A.; Shibata, K.; Tamaru, Y.
J . Am. Chem. Soc. 1998, 120, 4033-4034. (c) Barluenga, J .; Canteli,
R. M.; Flo´rez, J .; Gutie´rrez-Rodriquez, A.; Martin, E. J . Am. Chem.
Soc. 1998, 120, 2514-2522.
(9) (a) Sauveˆtre, R.; Normant, J . F. Tetrahedron Lett. 1982, 23,
4325-4328. (b) Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.;
Ru¨hter, G. J . Am. Chem. Soc. 1997, 119, 698-708.
(10) Zhou, Z.; J ames, B. R.; Alper, H. Organometallics 1995, 14, 4.
4209-4212.
(11) (a) Alper, H.; Zhou, J . Q. J . Org. Chem. 1992, 57, 3729-3731.
(b) Totland, K.; Alper, H. J . Org. Chem. 1993, 58, 3326-3329. (c) Amer,
I.; Alper, H. J . Am. Chem. Soc. 1990, 112, 3674-3676. (d) Lee, C. W.;
Alper, H. J . Org. Chem. 1995, 60, 499-503.
(12) Monteil, F.; Alper, H. J . Chem. Soc., Chem. Commun. 1995,
1601-1602.
(13) Zhou. J . Q.; Alper, H. Organometallics 1994, 13, 1586-1591.
(14) Goldberg, Y.; Alper, H. J . Chem. Soc., Chem. Commun. 1994,
1209-1210.
(1) (a) Trost, B. M.; Fleming, I. In Comprehensive Organic Synthesis;
Perganon: Oxford, 1991; Vol. 4, pp 913-950. (b) Elschenbroich, C.;
Salzer, A. In Organometallics: A Concise Introduction, 2nd ed.; VCH
Publishers: New York, 1992; pp 434-437. (c) Cornils, B.; Herrmann,
W. A. In Applied Homogeneous Catalysis with Organometallic Com-
pounds; VCH Publishers: 1996; Vol. 1, pp 29-111.
(2) (a) Fell, B.; Beutler, M. Tetrahedron Lett. 1972, 3455-3456. (b)
Botteghi, C.; Salomon, C. Tetrahedron Lett. 1974, 4285-4288. (c)
Greenfield, H.; Wotiz, J . H.; Wender, I. J . Org. Chem. 1957, 22, 542.
(d) Wuts, P. G. M.; Ritter, A. R. J . Org. Chem. 1989, 54, 5180-5182.
(e) Campi, E. M.; J ackson, W. R.; Nilsson, Y. Tetrahedron Lett. 1991,
32, 1093-1094. (f) Nombel, P.; Lugan, N.; Mulla, F.; Lavigne, G.
Organometallics 1994, 13, 4673.
(3) J ohnson, J . R.; Cuny, G. D.; Buchwald, S. L. Angew. Chem., Int.
Ed. Engl. 1995, 34, 1760-1761.
(4) Ishii, Y.; Miyashita, K.; Kamita, K.; Hidai, M. J . Am. Chem. Soc.
1997, 119, 6448-6449.
(5) (a) Doyama, K.; J oh, T.; Takahashi, S. Tetrahedron Lett. 1996,
27, 4497-4500. (b) Doyama, K.; J oh, T.; Shiohara, T.; Takahashi, S.
Bull. Chem. Soc. J pn. 1988, 61, 4353-4360. (c) Campi, E. M.; J ackson,
W. R. Aust. J . Chem. 1989, 42, 471-478.
10.1021/jo982425y CCC: $18.00 © 1999 American Chemical Society
Published on Web 04/30/1999