10.1002/chem.201603984
Chemistry - A European Journal
FULL PAPER
[9]
H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013,
341, DOI: 10.1126/science.1230444.
RuPt@UiO-66
[10] C.-J. Jia, F. Schuth, Physical Chemistry Chemical Physics 2011, 13,
The synthesis of RuPt@UiO-66 was similar to PdPt@UiO-66, but instead RuPt
NPs were used. The solvothermal reaction with the RuPt NPs results in a grey
powder.
2457-2487.
[11] D. Wang, Y. Li, Advanced Materials 2011, 23, 1044-1060.
[12] H. Kobayashi, K. Kusada, H. Kitagawa, Accounts of Chemical
Research 2015, 48, 1551-1559.
[13] R. Ghosh Chaudhuri, S. Paria, Chemical Reviews 2012, 112, 2373-
Catalytic hydrogenation of nitrobenzenes
2433.
The competitive hydrogenation of nitrobenzene (0.25 mmol) and 3,5-
dimethylnitrobenzene (0.25 mmol) was carried out at ambient temperature
inside 2 mL reactors pressurized at 2 bars H2, with 1 ml of hexane, ethanol ,
ethyl acetate or toluene, respectively. The catalyst amount for each run was
adjusted to 0.06 mol-% metal with respect to both compounds. Liquid reaction
products were analyzed by GC and GC-MS. Catalytic Reusability of the catalyst
was performed in ethanol. After each cycle, the solid catalyst was recovered by
filtration and washed thoroughly with ethanol. After drying in vacuum (10-3 mbar)
overnight the catalyst was reused.
[14] R. Ferrando, J. Jellinek, R. L. Johnston, Chemical Reviews 2008, 108,
845-910.
[15] Y. Huang, Y. Zhang, X. Chen, D. Wu, Z. Yi, R. Cao, Chemical
Communications 2014, 50, 10115-10117.
[16] J. Zhou, P. Wang, C. Wang, Y. T. Goh, Z. Fang, P. B. Messersmith, H.
Duan, ACS Nano 2015.
[17] L. Chen, B. Huang, Q. Xuan, X. Wang, R. Luque, Y. Li, Chemical
Science 2015.
[18] L. Chen, X. Chen, H. Liu, Y. Li, Small 2015, 11, 2642-2648.
[19] C. Rösler, D. Esken, C. Wiktor, H. Kobayashi, T. Yamamoto, S.
Matsumura, H. Kitagawa, R. A. Fischer, European Journal of Inorganic
Chemistry 2014, 2014, 5514-5521.
[20] Y. Liu, Z. Tang, Advanced Materials 2013, 25, 5819-5825.
[21] G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X.
Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J.
Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, F. Huo, Nature
Chemistry 2012, 4, 310-316.
[22] W. Zhang, G. Lu, C. Cui, Y. Liu, S. Li, W. Yan, C. Xing, Y. R. Chi, Y.
Yang, F. Huo, Advanced Materials 2014, 26, 4056–4060.
[23] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S.
Bordiga, K. P. Lillerud, Journal of the American Chemical Society 2008,
130, 13850-13851.
[24] I. Luz, C. Rösler, K. Epp, F. X. Llabrés i Xamena, R. A. Fischer,
European Journal of Inorganic Chemistry 2015, 2015, 3904-3912.
[25] M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M.
Tilset, C. Larabi, E. A. Quadrelli, F. Bonino, K. P. Lillerud, Chemistry of
Materials 2010, 22, 6632-6640.
[26] Z. Hu, D. Zhao, Dalton transactions 2015, 44, 19018-19040.
[27] K. Tulig, K. S. Walton, RSC Advances 2014, 4, 51080-51083.
[28] I. Saldan, Y. Semenyuk, I. Marchuk, O. Reshetnyak, Journal of
Materials Science 2015, 50, 2337-2354.
[29] P. Zhang, Y. Hu, B. Li, Q. Zhang, C. Zhou, H. Yu, X. Zhang, L. Chen, B.
Eichhorn, S. Zhou, ACS Catalysis 2015, 5, 1335-1343.
[30] Y. Wang, N. Toshima, The Journal of Physical Chemistry B 1997, 101,
5301-5306.
[31] T. Rades, V. Y. Borovkov, V. B. Kazansky, M. Polisset-Thfoin, J.
Fraissard, The Journal of Physical Chemistry 1996, 100, 16238-16241.
[32] G. M. Bancroft, I. Adams, L. L. Coatsworth, C. D. Bennewitz, J. D.
Brown, W. D. Westwood, Analytical Chemistry 1975, 47, 586-588.
[33] H. Liu, L. Chang, L. Chen, Y. Li, J. Mater. Chem. A 2015, 3, 8028-8033.
[34] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of
X-ray Photoelectron Spectroscopy, Perkin Elmer Corporation, Eden
Prairie, Minnesota, USA, 1992.
CO oxidation
A U-shaped quartz reactor was loaded with 20 mg catalyst diluted in 80 mg
silicon carbide and placed in a continuous flow set-up. Prior to CO oxidation, a
reductive pretreatment in hydrogen atmosphere at 200 °C was performed. The
catalytic oxidation of CO was performed in a gas mixture of 0.25 % CO (minimal
value limited by accurarcy of the mass flow controllers used) and 0.5 % O2
diluted in helium or hydrogen with a total flow rate of 100 mL min-1. Prior to CO
oxidation a reductive pretreatment of the catalysts was done. First pure helium
was purged for 15 min through the reactor. Afterwards, the rector was heated
up to the final pretreatment temperature (200 °C) with 1 K min-1 in a flow of 100
mL min-1 in 10 % hydrogen and maintained at this temperature for 60 min, before
the system was allowed to cool down to room temperature. Subsequently the
reactor was purged with He and the desired reaction mixture was flushed
through the reactor and the sample was heated to 200 °C (carrier gas H2) and
300 °C (carrier gas He) with a heating rate of 1 Kmin-1. The effluent gas stream
after the catalytic process was analyzed with a non-dispersive IR-detector
(Hartmann&Braun, Advanced Optima URAS 14) to determine the concentration
of the out coming species. Concentrations of CO and CO2 during the catalytic
CO oxidation were measured by a NDIR detector.
Acknowledgements
This work is supported by the Cluster of Excellence RESOLV
(EXC 1069) funded by the Deutsche Forschungsgemeinschaft
(DFG).
[35] Y. K. Du, P. Yang, Z. G. Mou, N. P. Hua, L. Jiang, Journal of Applied
Polymer Science 2006, 99, 23-26.
[36] S. Alayoglu, A. U. Nilekar, M. Mavrikakis, B. Eichhorn, Nature Materials
2008, 7, 333-338.
[37] F. A. Westerhaus, R. V. Jagadeesh, G. Wienhöfer, M.-M. Pohl, J.
Radnik, A.-E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A.
Brückner, M. Beller, Nature Chemistry 2013, 5, 537-543.
[38] R. Adams, F. L. Cohen, Organic Syntheses 1928, 8, 66.
[39] P. M. G. Bavin, Organic Syntheses 1960, 40, 5.
[40] C. F. H. Allen, J. VanAllan, Organic Syntheses 1942, 22, 9.
[41] A. Corma, P. Serna, Science 2006, 313, 332-334.
[42] A. Corma, C. Gonzalez-Arellano, M. Iglesias, F. Sanchez, Applied
Catalysis A. General 2009, 356, 99-102.
Keywords: Metal-Organic Frameworks
Nanoparticles • Catalysis
•
Nanostructures •
[1]
[2]
H. R. Moon, D.-W. Lim, M. P. Suh, Chemical Society Reviews 2013, 42,
1807-1824.
J. Juan-Alcaniz, J. Gascon, F. Kapteijn, Journal of Materials Chemistry
2012.
[43] L. Chen, H. Chen, R. Luque, Y. Li, Chemical Science 2014, 5, 3708-
3714.
[44] L. Cisneros, P. Serna, A. Corma, Angewandte Chemie International
Edition 2014, 53, 9306-9310.
[45] W. Du, G. Chen, R. Nie, Y. Li, Z. Hou, Catalysis Communications 2013,
41, 56-59.
[46] M. S. Wainwright, T. Ahn, D. L. Trimm, N. W. Cant, Journal of Chemical
& Engineering Data 1987, 32, 22-24.
[3]
[4]
C. R. Kim, T. Uemura, S. Kitagawa, Chemical Society Reviews 2016.
J. Hermannsdörfer, M. Friedrich, N. Miyajima, R. Q. Albuquerque, S.
Kümmel, R. Kempe, Angewandte Chemie 2012, 124, 11640-11644.
Q.-L. Zhu, J. Li, Q. Xu, Journal of the American Chemical Society 2013,
135, 10210-10213.
Z. Li, R. Yu, J. Huang, Y. Shi, D. Zhang, X. Zhong, D. Wang, Y. Wu, Y.
Li, Nature Communications 2015, 6.
W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang,
Q. Zhang, T. Gentle Iii, M. Bosch, H.-C. Zhou, Chemical Society
Reviews 2014, 43, 5561-5593.
[5]
[6]
[7]
[8]
N. Stock, S. Biswas, Chemical Reviews 2011.
This article is protected by copyright. All rights reserved.