The Journal of Organic Chemistry
Article
Chem. Soc. 1977, 99, 7589−7600. (b) Fu, J-J. L.; Bentrude, W. G.;
Griffin, C. E. J. Am. Chem. Soc. 1972, 94, 7717−7722.
(28) α-Scission of Ph• or RO• and β-scission of R• from
phosphoranyl radicals are slow processes. See ref 24 and: (a) Roberts,
B. P.; Scaiano, J. C. J. Chem. Soc., Perkin Trans. 2 1981, 905−911.
(b) Davies, A. G.; Parrott, M. J.; Roberts, B. P. J. Chem. Soc., Perkin
Trans. 2 1976, 1066−1071.
ACKNOWLEDGMENTS
■
We are very grateful for the suggestions and encouragement of
the late Professor Jack A. Kampmeier of the University of
Rochester. Thanks to Dr. Robert Kopitzke and Dr. Saeed Ziaee
for their assistance with the light-scattering measurements and
to Dr. Frank Saeva for helpful suggestions about this
manuscript. We acknowledge the support of the National
Science Foundation, CCLI Grant No. 0126470. We also thank
the Minnesota Chromatography Forum for an Undergraduate
Research Grant to L.G.S. and Winona State University for
Undergraduate Research Grants to K.L.V., R.H.M., T.T.S.,
J.W.W., M.J.S., and S.A.K.
(29) Chapman, S.; Kane-Maguire, L. A. P. J. Chem. Soc., Dalton Trans.
1993, 2021−2026.
(30) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2953−2956.
(31) Lowther, N.; Crook, P.; Hall, C. D. Phosphorus, Sulfur Silicon
Relat. Elem. 1995, 102, 195−204.
(32) Literature values for OTfe groups are in the range −73 to −78
ppm. (a) Everett, T. S. In Chemistry of Organic Fluorine Compounds II;
American Chemical Society: Washington, DC, 1995; pp 1037−1086.
(b) Kubota, T.; Miyashita, S.; Kitazuma, T.; Ishikawa, N. J. Org. Chem.
1980, 45, 5052−5057.
(33) Odian, G. Principles of Polymerization, 3rd ed.; Wiley: New York,
1991; pp 541−547.
(34) Matyjaszewski, K. J. Phys. Org. Chem. 1995, 8, 197−207.
(35) Hrkach, J.; Matyjaszewski, K. J. Polym. Sci., Polym. Chem. Ed.
1995, 33, 285−298.
(36) The products and slight polymerization observed in entry 10c
come about through a radical-chain reaction of the iodonium salt with
THF to form α-THF cations capable of starting cationic polymer-
ization.7
(37) The 20% conversion to polymer observed upon 250 min of
irradiation when the azo compound was not included (entry 11b) was
due to unintended UV photolysis of the iodonium salt. When a UV
filter was used between the light source and the tubes, control
experiments like this one did not polymerize (see entries 9b and 10b,
Table 4).
(38) A reviewer suggested that monomer-derived radicals may lead to
polymerization through their reaction with the phosphine, with
subsequent electron transfer leading to a reactive phosphonium ion,
which could start polymerization either by alkylating the monomer or
by expelling TFP to form a monomer-derived oxonium ion. We
obtained no specific evidence for the formation of CHO radical dimers
and we cannot rule out the possibility that some CHO radicals
propagated by reacting with TFP, but we think that the observed
effects of lowering the monomer concentration (entry 12) and
increasing the TFP concentration (entries 5 and 8) argue strongly for
radical termination as the primary mode of reactivity for the CHO-
derived radical.
(39) The rate constant for the reaction of phenyl radicals with
acetonitrile has been reported in the literature, kMeCN ≅ 1.0 × 105 M−1
s−1. Figuring in the expected primary deuterium isotope effect, the
corresponding rate constant for acetonitrile-d3 must be on the order of
only 2 × 104 M−1 s−1. Scaiano, J. C.; Stewart, L. C. J. Am. Chem. Soc.
1983, 105, 3609−3614.
(40) No PAIBN photoinitiator was required for these reactions
(entry 16−22) because triphenylphosphine and iodonium salt form a
visible-sensitive charge-transfer complex.24
REFERENCES
■
(1) (a) Nalli, T. W.; Stanek, L. G.; Steidler, R. H.; Weidell, K. L.;
Steckler, T. T.; Wackerly, J. W.; Studler, M. J. Abstracts of Papers, 235th
National Meeting of the American Chemical Society, New Orleans,
LA, March 2008; American Chemical Society: Washington, DC, 2008;
ORGN 125. (b) Nalli, T. W.; Stanek, L. G.; Steidler, R. H.; Weidell, K.
L.; Steckler, T. T.; Wackerly, J. W.; Studler, M. J. Abstracts of Papers,
39th National Organic Symposium 2005, University of Utah, June
2005; C47. (c) Nalli, T. W.; Stanek, L. G. Abstracts of Papers, 219th
National Meeting of the American Chemical Society, San Francisco,
CA, March 2000; American Chemical Society: Washington, DC, 2000;
ORGN 405.
(2) Crivello, J. V.; Lam, J. W. Macromolecules 1977, 10, 1307−1315.
(3) Crivello, J. V.; Sangermano, M. J. Polym. Sci., Polym. Chem. 2001,
39, 343−356.
(4) Crivello, J. V. Polym. Sci., Polym. Chem. 1999, 37, 4241−4254.
(5) Sangermano, M. J.; Crivello, J. V. In Photoinitiated Polymerization;
American Chemical Society:, Washington, DC, 2003; pp 242−252.
(6) Fouassier, J. P. In Photoinitiation, Photopolymerization and
Photocuring: Fundamentals and Applications; Hanser: Munich, 1995.
(7) Kampmeier, J. A.; Nalli, T. W. J. Org. Chem. 1994, 59, 1381−
1388.
(8) Ledwith, A. Makromol. Chem., Suppl. 1979, 3, 348−358.
(9) Ledwith, A. Polymer 1978, 19, 1217−1219.
(10) Crivello, J. V. Adv. Polym. Sci. 1984, 62, 1−48.
(11) He, J.-H.; Mendoza, V. S. J. Polym. Sci., Polym. Chem. 1996, 34,
2809−2816.
(12) Scranton, A. B.; Moorjani, S. K.; Sirovatka, K. J.; Nelson, E. W.
Polym. Mater. Sci. Eng. 1996, 75, 192−193.
(13) Yonet, N.; Bicak, N.; Yagci, Y. Macromolecules 2006, 39, 2736−
2738.
(14) Durmaz, Y. Y.; Moszner, N.; Yagci, Y. Macromolecules 2008, 41,
6714−6718.
(15) Yagci, Y.; Hepuzer, Y. Macromolecules 1999, 32, 6367−6370.
(16) Hua, Y.; Crivello, J. V. Macromolecules 2001, 34, 2488−2494.
(17) Aydogan, B.; Durmaz, Y. Y.; Kahveci, M. U.; Uygun, M.;
Tasdelen, M. A.; Yagci, Y. Macromol. Symp. 2011, 308, 25−34.
(18) Tasdelen, M. A.; Kumbaraci, V.; Jockusch, S.; Turro, N. J.;
Talinli, N.; Yagci, Y. Macromolecules 2008, 41, 295−297.
(19) Chen, S.; Cook, W. D.; Chen, F. Macromolecules 2009, 42,
5965−5975.
(41) White, C. K.; Rieke, R. D. J. Org. Chem. 1983, 43, 4638−4641.
(42) There has been disagreement about the proper value of the half-
wave reduction potential to use for Ph2I+, with many work-
ers3,10,13,14,16,18,20 continuing to use the value first reported by
Beringer in 1958, E1/2 = −0.2 V.43 However, five much more recent
papers have reported measurements of E1/2 in the −0.6 to −1.0 V
range.44−48 In addition, Previtali and co-workers49 have argued for the
−0.7 V value (used herein) based on the triplet quenching rates of a
series of photosensitizers by diphenyliodonium chloride. We think the
recent measurements along with the Previtali observations make it
clear that the true value is much closer to −0.7 V than it is to −0.2 V.
(43) Bachofner, H. E.; Beringer, F. M.; Meites, L. J. Am. Chem. Soc.
1958, 80, 4274−4278.
(20) Bi, Y.; Neckers, D. C. Macromolecules 1994, 27, 3683−3693.
(21) Crivello, J. V. J. Polym. Sci., Polym. Chem. 2009, 47, 866−875.
́
(22) Lalevee, J.; El-Roz, N.; Allonas, X.; Fouassier, J. P. J. Polym. Sci.,
Polym. Chem. 2008, 46, 2008−2014.
(23) Muneer, R.; Nalli, T. W. Macromolecules 1998, 31, 7976−7979.
(24) Kampmeier, J. A.; Nalli, T. W. J. Org. Chem. 1993, 58, 943−949.
(25) Ptitsyna, O. A.; Pudeeva, M. E.; Reutov, O. A. Dokl. Akad. Nauk
SSSR 1965, 165, 582−585.
(26) Ford, M. C.; Rust, R. A. J. Chem. Soc. 1958, 1297−1298.
(27) Rate constants reported in the literature for phenyl radical
additions to P(III) compounds are invariably in the 108 M−1 s−1 range.
(a) Kryger, R. G.; Lorand, J. P.; Stevens, N. R.; Herron, N. R. J. Am.
(44) Fung, S.; Moratti, S. C.; Graham, S. C.; Friend, R. H. Synth. Met.
1999, 102, 1167−1168.
3568
dx.doi.org/10.1021/jo302830r | J. Org. Chem. 2013, 78, 3561−3569