10.1002/cctc.201701413
ChemCatChem
FULL PAPER
[18] M. Hellinger, S. Baier, P. M. Mortensen, W. Kleist, A. D. Jensen, J.
Grunwaldt, Catalysts 2015, 5, 1152-1166.
To derive the major reaction path from product evolution, the W/F was
adjusted from 0 to 4 h, by varying both catalyst amount (0-240 mg) and
organic feed flow rate (0.03-0.48 mL/h). The W/F is defined as the ratio
of catalyst mass (g) to organic feed flow rate (g/h). For an example, the
H2 flow rate, guaiacol flow rate, and catalyst amount were 20 scm3/min,
0.12 mL/h and 68 mg, respectively, for W/F of 0.5 h. The conversion and
yield were reported in molcarbon%. The carbon balance was higher than
95% for each run. The absence of external and internal mass transfer
limitations were confirmed by the same conversion was achieved by
varying catalyst particle sizes and by varying feed flow rate at constant
W/F.
[19] H. W Lee, B. R. Jun, H. Kim, D. H. Kin, J. K. Jeon, S. H. Park, C. H. Ko,
T. W. Kim, Y. K. Park, Energy 2015, 81, 33-40.
[20] H. Shafaghat, P. S. Rezaei, W. M. A. W. Daud, RSC. Adv. 2015, 5,
33990-33998.
[21] W. Zhang, J. Chen, R. Liu, S. Wang, L. Chen, K. Li, ACS Sustainable
Chem. Eng. 2014, 2, 683−691.
[22] G. Yang, G. Wu, W. Dai, N. Guan, L. Li, Fuel 2015, 150, 175-183.
[23] J. Horacek, G. Stavova, V. Kelbichova, D. Kubicka, Catal. Today 2013,
204, 38-45.
[24] M. S. Zanuttini, B. O. D. Costa, C. A. Querini, M. A. Peralta, Appl. Catal.
A 2014, 482, 352-361.
The major intermediates (cyclopentanone and catechol (1,2-
dihydroxybenzene)) during the guaiacol conversion were also fed to
investigate the reaction pathway. To feed catechol, a solid at room
temperature, an aqueous solution of 30 wt.% catechol was used. The
effect of water on the guaiacol conversion was tested by co-feeding H2O
with a guaiacol/H2O mass ratio of 4/1.
[25] T. M. Huyh, U. Armabruster, M. M. Pohl, M. Schneider, J. Radnick, D. L.
Hoang, M. M. Q. Phan, D. A., Nguyen, A. Martin, ChemCatChem 2014,
6, 1940-1951.
[26] S. Echeandia, B. Pawelec, V. L. Barrio, P. L. Arias, J. F. Cambra, C. V.
Loricera, J. L. G. Fierro, Fuel 2014, 117, 1061-1073.
[27] J. A. Hunns, M. Arroyo, A. F. Lee, J. M. Escola, D. Serrano, K. Wilson,
Catal. Sci. Technol. 2016, 6, 2560-2564.
[28] S. Pichaikaran, P. Arumuqam, Green Chem. 2016, 18, 2888-2899.
[29] X. Xu, E. Jiang, Y. Du, B. Li, Renewable Energy 2016, 96, 458-468.
[30] M. Grilc, B. Likozar, J. Levec, ChemCatChem 2016, 8, 180-191.
[31] M. Grilc, B. Likozar, J. Levec, Appl. Catal. B 2014, 150-151, 275-287.
[32] A. Bjelic, M. Grilc, B. Likozar, Chem. Eng. J. 2018, 333, 240-259.
[33] I. Graca, J. M. Lopes, M. F. Ribeiro, F. R. Ribeiro, H. S. Cergueira, M.
B. B. de Almeida, Appl. Catal. B 2011, 101, 613-621.
[34] G. S. Foo, A. K. Rogers, M. M. Yung, C. Sievers, ACS Catal. 2016, 6,
1292-1307.
Acknowledgements
The authors thank the support from National Natural Science
Foundation of China (21676194) and Ministry of Education of
China for Program of New Century Excellent Talents in
University (NCET-12-0407).
[35] J. E. Peters, J. R. Carpenter, D. C. Dayton, Energy Fuels 2015, 29,
909-916.
Keywords: Guaiacol • Hydrodeoxygenation • Pt/HBeta •
[36] T. Nimmanwudipong, R. C. Runnebaum, K. C. Brodwater, J. Heelan, D.
E. Block, B. C. Gates, Energy Fuels 2014, 28, 1090-1096.
[37] T. Nimmanwudipong, C. Aydin, J. Lu, R. C. Runnebaum, K. C.
Brodwater, N. D. Browning, D. E. Block, B.C. Gates, Catal. Lett. 2012,
142, 1190-1196.
Transalkylation • Decarbonylation
[1]
D. Mohan, C. U. P. Pittman Jr., P. H. Steele, Energy Fuels 2006, 20,
848-889.
[2]
[3]
G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044-4098.
X. Zhu, L. L. Lobban, R. G. Mallinson, D. E. Resasco, J. Catal. 2010,
271, 88-98.
[38] D. Gao, Y. Xiao, A. Varma, Ind. Eng. Chem. Res. 2015, 54, 10638-
10644.
[39] Q. Sun, G. Chen, H. Wang, X. Liu, J. Han, Q. Ge, X. Zhu,
ChemCatChem 2016, 8, 551-561.
[4]
J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen,
Chem. Rev. 2010, 110, 3552-3599.
[40] C. Chen, G. Chen, F. Yang, H. Wang, J. Han, Q. Ge, X. Zhu, Chem.
Eng. Sci. 2015, 135, 145-154.
[5]
[6]
E. Furimsky, Appl. Catal. A 2000, 199, 147-190.
M. Saidi, F. Samimi, D. Karimipourfard, T. Nimmanwudipong, B. C.
Gates, M. R. Rahimpour, Energy Environ. Sci. 2014, 7, 103-129.
J. C. Hicks, J. Phys. Chem. Lett. 2011, 2, 2280–2287.
S. T. Oyama, T. Onkawa, A. Takagaki, K. Kikuchi, S. Hosokai, Y.
Suzuki, K. K. Bando, Top Catal. 2015, 58, 201-210.
T. Nimmanwudipong, R. C. Runnebaum, D. E. Block, B. C. Gates,
Energy Fuels 2011, 25, 3417-2427.
[41] X. Zhu, R. G. Mallinson, D. E. Resasco, Appl. Catal. A 2010, 379, 172-
181.
[7]
[8]
[42] X. Zhu, L. L. Lobban, R. G. Mallinson, D. E. Resasco, Energy Fuels
2014, 28, 4104-4111.
[43] J. Lu, S. Behtash, O. Mamun, A. Heyden, ACS Catal. 2015, 5, 2423-
2435.
[9]
[44] C. C. Chiu, A. Genest, A. Borgna, N. Rosch, ACS Catal. 2014, 4, 4178-
4188.
[10] J. Sun, A. M. Karim, H. Zhang, L. Kovarick, X. S. Li, A. J. Hensley, J. S.
McEwen, Y. Wang, J. Catal. 2013, 306, 47-57.
[45] K. Lee, G. H. Gu, C. A. Mullen, A. A. Boateng, D. G. Vlachos,
ChemSusChem 2015, 8, 315-322.
[11] J. Chang, T. Danuthai, S. Dewiyanti, C. Wang, A. Borgna,
ChemCatChem 2013, 5, 3041-3049.
[46] T. Sakai, M. Hattori, Chem. Lett. 1976, 1153-1156.
[47] I. W. C. E. Arends, R. Louw, P. Mulder, J. Phys. Chem. 1993, 97, 7914-
7925.
[12] D. Y. Hong, S. J. Miller, P. K. Agrawal, C. W. Jones, Chem. Commun.
2010, 46, 1038-1040.
[13] C. Zhao, S. Kasakov, J. He, J.A. Lercher, J. Catal. 2012, 296, 12-23.
[14] W. Song, Y. Liu, E. Barath, C. Zhao, J. A. Lercher, Green Chem. 2015,
17, 1204-1218.
[48] G. Li, J. Han, H. Wang, X. Zhu, Q. Ge, ACS Catal. 2015, 5, 2009-2016.
[49] D. Nematollahi, M. Rafiee, J. Electroanalytical Chem. 2004, 566, 31-37.
[50] H. Ihm, J. M. White, J. Phys. Chem. B 2000, 104, 6202-6211.
[51] R. Reocreux, C. A. O. Hamou, C. Michel, J. B. Giorgi, P. Sautet, ACS
Catal. 2016, 6, 8166-8178.
[15] L. Wang, J. Zhang, X. Yi, A. Zheng, F. Deng, C. Chen, Y. Ji, F. Liu, X.
Meng, F. Xiao, ACS Catal. 2015, 5, 2727-2734.
[16] F. Anaya, L. Zhang, Q. Tan, D. E. Resasco, J. Catal. 2015, 328, 173-
185.
[52] D. Liu, G. Li, F. Yang, H. Wang, J. Han, X. Zhu, Q. Ge, J. Phys. Chem.
C 2017, 121, 12249-12260.
[17] M. Hellinger, H. W. P. Caralho, S. Baier, D. Wang, W. Kleist, J. D.
Grunwaldt, Appl. Catal A 2015, 490, 181-192.
10
This article is protected by copyright. All rights reserved.