P e r s o n a l A c c o u n t
T H E C H E M I C A L R E C O R D
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
References
[
1] Paul N. Rylander, “Hydrogenation and Dehydrogenation” in
Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH,
Weinheim, 2005. doi:10.1002/14356007.a13_487.
2] P. G. Jessop, W. Leitner in Chemical Synthesis Using Super-
critical Fluids (Eds.: P. G. Jessop, W. Leitner), Wiley, New
York, 1999.
[
[3] A. Baiker, Chem. Rev. 1999, 99, 453–474.
[
[
[
[
4] M. Arai, S. Fujita, M. Shirai, J. Supercrit. Fluids 2009, 47(3),
51–356.
5] B. Subramanian, C. J. Cyon, V. Avunajatesun, Appl. Catal. B
002, 37, 279–292.
6] P. Licence, J. Ke, M. Sokolave, S. K. Ross, M. Poliakoff, Green
Chem. 2003, 5, 99–104.
3
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
Figure 6. Tetralin hydrogenation over Rh/C (0.010 g) under 3 MPa of
2
hydrogen and 10 MPa of carbon dioxide at 313 K in 10 MPa of scCO (a)
2
and in 10 mL of n-heptane.
7] M. Burgener, D. Ferri, J. D. Grunwaldt, T. Mallat, A. Baiker,
J. Catal. 2005, 109, 16794–16800.
is formed via flipping of the intermediate 2,3,4,5,6,8,10-
[8] J. Kobayashi, Y. Mori, S. Kobayashi, Chem. Commun. 2005,
1,9
octahydronaphthalene (D -Octa), in which it desorbs from
2567–2568.
[
9] T. Sato, C. V. Rode, O. Sato, M. Shirai, Appl. Catal. B 2004,
49(3), 181–185.
the metal surface and immediately readsorbs on its other side,
[
23]
followed by its further hydrogenation to give t-Deca.
[
[
[
10] C. V. Rode, U. D. Joshi, O. Sato, M. Shirai, Chem. Commun.
Scheme 4 shows the reaction mechanism of Naph hydro-
genation on Rh/C. Similar to the ring hydrogenation of 4-t-
BP at low temperature described in section 3.2, higher cis
ratio was obtained for hydrogenations of Naph and Tetra in
2003, 1960–1961.
11] C. V. Rode, U. D. Joshi, T. Sato, O. Sato, M. Shirai, Stud.
Surf. Sci. Catal. 2004, 153, 385–388.
12] M. Sekiguchi, S.Tanaka, Jpn. Patent 3528519, 2004.
scCO solvent than organic solvents. Higher hydrogen atom
2
[13] N. Hiyoshi, E. Mine, C. V. Rode, O. Sato, T. Ebina, M. Shirai,
Chem. Lett. 2006, 35(9), 1060–1061.
[14] N. Hiyoshi, C. V. Rode, O. Sato, H. Tetsuka, M. Shirai, J.
Catal. 2007, 252(1), 57–68.
concentration on rhodium sites could enhance the cis
addition of hydrogen atom to the surface intermediate and
lower solubility of surface intermediate would retard the
flipping of the intermediate.
[
[
[
[
15] H. A. Smith, B. L. Stump, J. Am. Chem. Soc. 1961, 83, 2739–
2
743.
16] S. R. Konuspaev, K. N. Zhanbekov, N. V. Kul’kova, D. Y.
Murzin, Chem. Eng. Technol. 1997, 20, 144–148.
17] S. Siegel, G. V. Smith, B. Dmuchovsky, D. Dubbell, W.
Halpern, J. Am. Chem. Soc. 1962, 84, 3136–3139.
18] N. Hiyoshi, K. K. Bando, O. Sato, A. Yamaguchi, C. V. Rode,
M. Shirai, Catal. Commun. 2009, 10(13), 1702–1705.
[19] N. Hiyoshi, O. Sato, A. Yamaguchi, C. V. Rode, M. Shirai,
Green Chem. 2012, 14, 638–633.
[20] N. Hiyoshi, M. Osada, C. V. Rode, O. Sato, M. Shirai, Appl.
Catal. A 2007, 331, 1–7.
[
21] N. Hiyoshi, E. Mine, C. V. Rode, O. Sato, M. Shirai, Chem.
Lett. 2006, 35, 188–189.
1,9
Scheme 4. Formation of c-Deca (a) and t-Deca via
D -Octa in Naph
hydrogenation.
[22] N. Hiyoshi, E. Mine, C. V. Rode, O. Sato, M. Shirai, Appl.
Catal. A 2006, 310, 194–98.
[
23] W. Weitkamp, Adv. Catal. 1968, 18, 1–110.
4. Summary
Multi-phase hydrogenation with supported rhodium catalysts
and supercritical carbon dioxide solvent was effective to give
higher reaction rates and higher cis ratio for ring hydro-
genation of aromatic compounds.
Manuscript received: August 15, 2018
Revised manuscript received: November 20, 2018
Accepted: November 21, 2018
Version of record online: && &&, &&&&
Chem. Rec. 2019, 19, 1–10
© 2019 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Wiley Online Library
9