much lower than that obtained with MeCN (run 3). One of the
possible reasons for this effect is the stability enhancement of
the Td4+* species in polar MeCN. This is supported by ESR
J. Chem. Soc., Chem. Commun., 1994, 2423–2424; (c) P. Boarini,
V. Carassiti, A. Maldotti and R. Amadelli, Langmuir, 1998, 14,
2080–2085; (d) A. Sclafani and J. M. Herrmann, J. Phys. Chem.,
1996, 100, 13655–13661; (e) K.-I. Shimizu, T. Kaneko,
T. Fujishima, T. Kodama, H. Yoshida and Y. Kitayama, Appl.
Catal., A, 2002, 225, 185–191; (f) C. B. Almquist and P. Biswas,
Appl. Catal., A, 2001, 214, 259–271; (g) M. A. Brusa and
M. A. Grela, J. Phys. Chem. B, 2005, 109, 1914–1918;
(h) M. A. Gonzalez, S. G. Howell and S. K. Sikdar, J. Catal.,
1999, 183, 159–162.
5+
analysis. As shown in Fig. 4.i, the Td spectra for Cr–Si(0),
(10), and (50) catalysts obtained in vacuo are similar. Photo-
irradiation of the catalysts leads to an intensity decrease due
to the formation of Td4+* species. The intensity decrease
becomes smaller with an increase in the BTESE content of
the catalysts, indicating that the quantity of Td4+* decreases
4 (a) R. Amadelli, M. Bregola, E. Polo, V. Carassiti and A. Maldotti,
J. Chem. Soc., Chem. Commun., 1992, 1355–1357; (b) A. Molinari,
R. Amadelli, L. Antolini, A. Maldotti, P. Battioni and D. Mansuy,
J. Mol. Catal. A: Chem., 2000, 158, 521–531.
with the BTESE content increase. The Td4+* species has a
charge-transferred electronic structure.21 The decreased Td
*
4+
quantity is probably because the Td4+* species is destabilized
by hydrophobic surface of the catalyst. Addition of polar
MeCN to the solution probably stabilizes the Td4+* species
as compared to the case with pure CHA. This may be the
reason for the activity improvement by the MeCN addition.
5 (a) A. Molinari, R. Amadelli, L. Andreotti and A. Maldotti,
J. Chem. Soc., Dalton Trans., 1999, 1203–1204; (b) A. Maldotti,
A. Molinari, G. Varani, M. Lenarda, L. Storaro, F. Bigi,
R. Maggi, A. Mazzacani and G. Sartori, J. Catal., 2002, 209,
210–216.
6 (a) K. Teramura, T. Tanaka, T. Yamamoto and T. Funabiki,
J. Mol. Catal. A: Chem., 2001, 165, 299–301; (b) K. Teramura,
T. Tanaka, M. Kani, T. Hosokawa and T. Funabiki, J. Mol. Catal.
A: Chem., 2004, 208, 299–305.
4. Conclusion
7 (a) Y. Shiraishi, Y. Teshima and T. Hirai, Chem. Commun., 2005,
4569–4571; (b) Y. Shiraishi, Y. Teshima and T. Hirai, J. Phys.
Chem. B, 2006, 110, 6257–6263.
Hydrophobic Cr–Si(x) catalysts containing highly dispersed
chromate species were synthesized by a hydrolysis of TEOS,
BTESE, and Cr salts. These catalysts were used for CHA
oxidation with O2 under visible light irradiation. All Cr–Si(x)
catalysts promote partial CHA oxidation with high selectivity.
Among the catalysts, Cr–Si(10) prepared with 10% BTESE
shows the highest catalytic activity. The enhanced activity of
Cr–Si(10) than that of Cr–Si(0) prepared without BTESE is
due to the increase in surface hydrophobicity of the catalyst,
which accelerates the reaction of CHA with the excited state
chromate species (Td4+*). In contrast, Cr–Si(x) prepared with
420% BTESE shows the decreased activity. This is because
the calcination of precursor gel leads to a shrinkage of the
pores. This suppresses the access of CHA to the Td4+* species
confined within the plugged pores.
8 (a) A. Corma, P. Esteve and A. Martı
11–19; (b) M. A. Camblor, A. Corma, P. Esteve, A. Martı
S. Valencia, Chem. Commun., 1997, 795–796.
´
nez, J. Catal., 1996, 161,
´
nez and
9 T. Blasco, A. Corma, M. T. Navarro and J. P. Pariente, J. Catal.,
1995, 156, 65–74.
10 (a) K. A. Koyano, T. Tatsumi, Y. Tanaka and S. Nakata, J. Phys.
Chem. B, 1997, 101, 9436–9440; (b) A. Corma, M. Domine,
´ ´
J. A. Gaona, J. L. Jorda, M. T. Navarro, F. Rey, J. Perez-Pariente,
J. Tsuji, B. McCulloch and L. T. Nemeth, Chem. Commun., 1998,
2211–2212.
11 (a) T. Asefa, M. J. MacLachlan, N. Coombs and G. A. Ozin,
Nature, 1999, 402, 867–871; (b) S. Inagaki, S. Guan,
Y. Fukushima, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc.,
1999, 121, 9611–9614.
12 (a) A. Bhaumik, M. P. Kapoor and S. Inagaki, Chem. Commun.,
2003, 470–471; (b) M. P. Kapoor, A. Bhaumik, S. Inagaki,
K. Kuraoka and T. Yazawa, J. Mater. Chem., 2002, 12,
3078–3083.
13 Y. Shiraishi, Y. Sugano, S. Tanaka and T. Hirai, Angew. Chem.,
Int. Ed., 2010, 49, 1656–1660.
Acknowledgements
14 Y. Shiraishi, N. Saito and T. Hirai, Chem. Commun., 2006,
773–775.
15 Y. Shiraishi, N. Saito and T. Hirai, J. Am. Chem. Soc., 2005, 127,
8304–8306.
16 Y. Shiraishi, M. Morishita, Y. Teshima and T. Hirai, J. Phys.
Chem. B, 2006, 110, 6587–6594.
This work was supported by the Grant-in-Aid for Scientific
Research (No. 19760536) from the Ministry of Education,
Culture, Sports, Science and Technology, Japan (MEXT).
H.O. thanks the Japan Society of Promotion of Science (JSPS)
Research Fellowships for Young Scientist.
17 (a) T. Kamegawa, J. Morishima, M. Matsuoka, J. M. Thomas and
M. Anpo, J. Phys. Chem. C, 2007, 111, 1076–1078; (b) F. Amano,
T. Yamaguchi and T. Tanaka, J. Phys. Chem. B, 2006, 110,
281–288.
Notes and references
18 M. Morishita, Y. Shiraishi and T. Hirai, J. Phys. Chem. B, 2006,
110, 17898–17905.
1 (a) U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. da
Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinace and E. L. Pires,
´
19 (a) B. M. Weckhuysen, I. E. Wachs and R. A. Schoonheydt, Chem.
Rev., 1996, 96, 3327–3349; (b) B. M. Weckhuysen,
A. A. Verberckmoes, A. L. Buttiens and R. A. Schoonheydt,
J. Phys. Chem., 1994, 98, 579–584.
Appl. Catal., A, 2001, 211, 1–17; (b) G. Bellussi and C. Perego,
CATTECH, 2000, 4, 4–16; (c) A. Castellan, J. C. J. Bart and
S. Cavallaro, Catal. Today, 1991, 9, 237–254.
2 (a) R. Zhao, D. Ji, G. Lv, G. Qian, L. Yan, X. Wang and
J. Suo, Chem. Commun., 2004, 904–905; (b) R. Raja, G.
Sankar and J. M. Thomas, J. Am. Chem. Soc., 1999, 121,
11926–11927.
20 B. M. Weckhuysen, R. A. Schoonheydt, J.-M. Jehng, I. E. Wachs,
S. J. Cho, R. Ryoo, S. Kijlstra and E. Poels, J. Chem. Soc.,
Faraday Trans., 1995, 91, 3245–3253.
3 (a) C. Giannotti, S. Le Greneur and O. Watts, Tetrahedron Lett.,
1983, 24, 5071–5072; (b) G. Lu, H. Gao, J. Suo and S. Li,
21 K. Wada, H. Yamada, Y. Watanabe and T. Mitsudo, J. Chem.
Soc., Faraday Trans., 1998, 94, 1771–1778.
c
2846 New J. Chem., 2010, 34, 2841–2846 This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2010