Paper
RSC Advances
´
6 E. Dıaz, A. F. Mohedano, L. Calvo, M. A. Gilarranz, J. A. Casas
HMS and PtIr0.1/HMS, respectively, further verifying the
´
promotion effect of Ir on the Pt.
and J. J. Rodrıguez, Chem. Eng. J., 2007, 131, 65.
7 H. Liu, T. Jiang, B. Han, S. Liang and Y. Zhou, Science, 2009,
326, 1250.
Promotion effect of Ir on the Pt based catalyst
8 Y. Wang, J. Yao, H. Li, D. Su and M. Antonietti, J. Am. Chem.
Soc., 2011, 133, 2362.
9 X. Yang, X. Yu, L. Long, T. Wang, L. Ma, L. Wu, Y. Bai, X. Li
and S. Liao, Chem. Commun., 2014, 50, 2794.
Considering that the Pt loadings of catalysts are xed at 1.5%,
the activity enhancement can be ascribed to the promoter effect
of Ir. The promotion effect on the activity can be ascribed to the
improved metal dispersion and modulated electronic state. As
justied by the XRD and TEM results, the PtIr alloy effectively
hinders the particle growth. Higher metal dispersion means
more of active sites, resulting in accelerated hydrogenation
reaction. With respect to the electronic modulation, as shown in
TPR and XPS analysis, it veries the intensied metal-support
interaction and charge transfer induced by the Ir promoter,
and both can inuence the catalytic behaviour of reactants and
intermediates (e.g. dissociative, ads–desorption, etc.) during
hydrogenation.
10 J. He, C. Zhao and J. A. Lercher, J. Am. Chem. Soc., 2012, 134,
20768.
11 E.-J. Shin and M. A. Keane, Ind. Eng. Chem. Res., 2000, 39,
883.
12 C. Zhao, S. Kasakov, J. He and J. A. Lercher, J. Catal., 2012,
296, 12.
13 K. Amouzegar and O. Savadogo, Electrochim. Acta, 1998, 43,
503.
´
14 Y. Song, O. Y. Gutierrez, J. Herranz and J. A. Lercher, Appl.
Catal., B, 2016, 182, 236.
15 S. Alayoglu, A. U. Nilekar, M. Mavrikakis and B. Eichhorn,
Nat. Mater., 2008, 7, 333.
16 S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang and
G. A. Somorjai, Nat. Mater., 2009, 8, 126.
17 M. Shao, K. Shoemaker, A. Peles, K. Kaneko and L. Protsailo,
J. Am. Chem. Soc., 2010, 132, 9253.
18 A. U. Nilekar, K. Sasaki, C. A. Farberow, R. R. Adzic and
M. Mavrikakis, J. Am. Chem. Soc., 2011, 133, 18574.
19 B. Habibi, M. H. Pournaghi-Azar, H. Abdolmohammad-
Zadeh and H. Razmi, Int. J. Hydrogen Energy, 2009, 34, 2880.
20 T. Frelink, W. Visscher and J. A. R. van Veen, Surf. Sci., 1995,
335, 353.
21 R. Burch and T. C. Watling, Appl. Catal., B, 1997, 11, 207.
22 A. Tomita, K.-i. Shimizu and Y. Tai, Catal. Lett., 2014, 144,
1689.
23 B. Li, X. Hong, J.-J. Lin, G.-S. Hu, Q. Yu, Y.-J. Wang, M.-F. Luo
and J.-Q. Lu, Appl. Surf. Sci., 2013, 280, 179.
24 X. Yang, S. Liao, J. Zeng and Z. Liang, Appl. Surf. Sci., 2011,
257, 4472.
25 X. Yang, L. Du, S. Liao, Y. Li and H. Song, Catal. Commun.,
2012, 17, 29.
26 P. T. Tanev and T. J. Pinnavaia, Chem. Mater., 1996, 8, 2068.
27 T. Zhu, C. Du, C. Liu, G. Yin and P. Shi, Appl. Surf. Sci., 2011,
257, 2371.
Conclusions
A high-performance Ir promoted Pt catalyst for hydrogenation of
phenol is prepared using the hollow mesoporous silica sphere
(HMS) as support through a facile wet-impregnation and H2
reduction method. The obtained PtIr0.1/HMS catalyst (with Ir/Pt
molar ratio of 0.1) shows highest hydrogenation rate of
4255 mmol hÀ1 gPt (with cyclohexanone selectivity of 85%) at
À1
ꢀ
50 C and 0.5 MPa of pH , which is 3 times and 8.6 times higher
2
than that the mono Pt/HMS catalyst and commercial Pt/C catalyst,
respectively. The addition of Ir promoter essentially contributes to
the enhanced hydrogenation activity by improving the metal
dispersion of Pt nanoparticles and promoting the charge transfer
between the Pt and Ir. This work provides an effective protocol in
developing a high performance catalyst for phenol hydrogenation
under mild reaction conditions.
Acknowledgements
This work was supported by the National Scientic Foundation
of China (project No. 21303210), and Open Project Program of
the State Key Lab of CAD&CG (Grant No. A1701) Zhejiang
University.
28 X. Yang, D. Chen, S. Liao, H. Song, Y. Li, Z. Fu and Y. Su, J.
Catal., 2012, 291, 36.
29 X. Yang, C. Huang, Z. Fu, H. Song, S. Liao, Y. Su, L. Du and
X. Li, Appl. Catal., B, 2013, 140, 419.
30 Y. Li, G.-H. Lai and R.-X. Zhou, Appl. Surf. Sci., 2007, 253,
4978.
Notes and references
1 J. B. J. H. van Duuren, B. Brehmer, A. E. Mars, G. Eggink,
V. A. P. M. dos Santos and J. P. M. Sanders, Biotechnol.
Bioeng., 2011, 108, 1298.
31 G. S. Fonseca, G. Machado, S. R. Teixeira, G. H. Fecher,
J. Morais, M. C. M. Alves and J. Dupont, J. Colloid Interface
Sci., 2006, 301, 193.
32 A. Li, K. Shen, J. Chen, Z. Li and Y. Li, Chem. Eng. Sci., 2017,
166, 66.
2 N. Mahata and V. Vishwanathan, J. Catal., 2000, 196, 262.
3 Z. Li, J. Liu, C. Xia and F. Li, ACS Catal., 2013, 3, 2440.
4 P. M. Mortensen, J.-D. Grunwaldt, P. A. Jensen and
A. D. Jensen, ACS Catal., 2013, 3, 1774.
5 S. Narayanan and K. Krishna, Appl. Catal., A, 1996, 147, L253.
This journal is © The Royal Society of Chemistry 2017
RSC Adv., 2017, 7, 31582–31587 | 31587