10.1002/anie.201900717
Angewandte Chemie International Edition
COMMUNICATION
reactivity was performed under.[18, 17b, 8d] The reactivity properties
of previously reported Mn2-peroxide complexes were not
addressed.[6] The lower metal oxidation state in 2 with respect to
the other examples (MnIII2- and MnIV2-peroxide complexes) could
enhance its nucleophilic reactivity.[6] We believe that 2 was more
reactive than [Mn2(O2)(N-Et-HPTB)]2+ due to the presence of less
steric bulk in 2 allowing for more facile access to the peroxide core.
That aldehydes reacted with 2 demonstrates that an electrophile
is required to activate the MnIIMnIII-peroxide core, as in the RNRs
where H+ is postulated to activate the core.
and Environmental Research and the National Institutes of Health
(P41-GM-103393). E.R.F. is supported by NIH grant P30-EB-
009998.
Keywords: ribonucleotide reductases
•
MnIIMnIII-peroxide
•
superoxide activation
•
nucleophilic reactivity
•
aldehyde
deformylation
[1] J. A. Cotruvo, J. Stubbe, Annu. Rev. Biochem. 2011, 80, 733-767.
[2] a) A. Jordan, P. Reichard, Annu. Rev. Biochem. 1998, 67, 71-98; b) M.
Kolberg, K. R. Strand, P. Graff, K. K. Andersson, Biochim. Biophys.
Acta 2004, 1699, 1-34; c)P. Nordlund, P. Reichard, Annu. Rev.
Biochem. 2006, 75, 681-706.
[3] a) A. K. Boal, J. A. Cotruvo, Jr., J. Stubbe, A. C. Rosenzweig, Science
2010, 329, 1526-1530; b) J. A. Cotruvo, Jr., J. Stubbe, Biochemistry
2010, 49, 1297-1309; c) N. Cox, H. Ogata, P. Stolle, E. Reijerse, G.
Auling, W. Lubitz, J. Am. Chem. Soc. 2010, 132, 11197-11213; d) J. A.
Cotruvo, Jr., T. A. Stich, R. D. Britt, J. Stubbe, J. Am. Chem. Soc. 2013,
135, 4027-4039.
[4] a) S. Groni, G. Blain, R. Guillot, C. Policar, E. Anxolabehere-Mallart,
Inorg. Chem. 2007, 46, 1951-1953; b) M. Gennari, D. Brazzolotto, J.
Pecaut, M. V. Cherrier, C. J. Pollock, S. DeBeer, M. Retegan, D. A.
Pantazis, F. Neese, M. Rouzieres, R. Clerac, C. Duboc, J. Am. Chem.
Soc. 2015, 137, 8644-8653; c) D. Brazzolotto, F. G. Cantu Reinhard, J.
Smith-Jones, M. Retegan, L. Amidani, A. S. Faponle, K. Ray, C.
Philouze, S. P. de Visser, M. Gennari, C. Duboc, Angew. Chem. Int.
Ed. Engl. 2017, 56, 8211-8215.
[5] A. M. Magherusan, A. Zhou, E. R. Farquhar, M. Garcia-Melchor, B.
Twamley, L. Que, Jr., A. R. McDonald, Angew. Chem. Int. Ed. Engl.
2018, 57, 918-922.
[6] a) T. W. U. Bossek, K. Wieghardt, B. Nuber, J. Weiss, J. Am. Chem.
Soc. 1990, 112, 6387-6388; b) M. K. Coggins, X. Sun, Y. Kwak, E. I.
Solomon, E. Rybak-Akimova, J. A. Kovacs, J. Am. Chem. Soc. 2013,
135, 5631-5640.
Table 1. Rate constants for deformylation by Mn-peroxide complexes.
PPA
k2 [M-1s-1]
CCA
k2 [M-1s-1]
Ref
Ref
(T [°C])
(T [°C])
2
0.0006 (-90)
0.014 (-90)
0.3 (0)
[MnIII(O2)(12-TMC)]+
[MnIII(O2)(13-TMC)]+
[MnIII(O2)(14-TMC)]+
[MnIII(O2)(Pro3Py)]+
[MnIII(O2)(L7py26-Me)]+
[MnIII(O2)(L7py24-Me)]+
[MnIII(O2)(L8py2H)]+
0.04 (20)
[8d]
[8d]
[8d]
[19]
[18]
[17b]
[17b]
0.03 (20)
0.02 (10)
0.04 (10)
-
0.04 (20)
0.003 (0)
-
[20]
-
-
-
0.32 (-40)
0.40 (-40)
0.19 (-40)
[7] a) M. Suzuki, M. Mikuriya, S. Murata, A. Uehara, H. Oshio, S. Kida, K.
Saito, Bull. Chem. Soc. Jpn. 1987, 60, 4305-4312; b) S. Blanchard, G.
Blondin, E. Riviere, M. Nierlich, J. J. Girerd, Inorg. Chem. 2003, 42,
4568-4578.
[20]
[20]
[8] a) D. R. Gamelin, M. L. Kirk, T. L. Stemmler, S. Pal, W. H. Armstrong,
J. E. Penner-Hahn, E. I. Solomon, J. Am. Chem. Soc. 1994, 116, 2392-
2399; b) R. L. Shook, W. A. Gunderson, J. Greaves, J. W. Ziller, M. P.
Hendrich, A. S. Borovik, J. Am. Chem. Soc. 2008, 130, 8888-8889; c) J.
Cho, R. Sarangi, W. Nam, Acc. Chem. Res. 2012, 45, 1321-1330; d) H.
Kang, J. Cho, K. B. Cho, T. Nomura, T. Ogura, W. Nam, Chem. Eur. J.
2013, 19, 14119-14125; e) D. F. Leto, S. Chattopadhyay, V. W. Day, T.
A. Jackson, Dalton Trans. 2013, 42, 13014-13025; f) D. F. Leto, T. A.
Jackson, J. Biol. Inorg. Chem. 2014, 19, 1-15; g) N. Saravanan, M.
Sankaralingam, M. Palaniandavar, RSC Advances 2014, 4, 12000.
[9] H. Diril, H. R. Chang, M. J. Nilges, X. Zhang, J. A. Potenza, H. J.
Schugar, S. S. Isied, D. N. Hendrickson, J. Am. Chem. Soc. 1989, 111,
5102-5114.
[10] a) H. Diril, H. R. Chang, X. Zhang, S. K. Larsen, J. A. Potenza, C. G.
Pierpont, H. J. Schugar, S. S. Isied, D. N. Hendrickson, J. Am. Chem.
Soc. 1987, 109, 6207-6208; b) R. M. Buchanan, K. J. Oberhausen, J.
F. Richardson, Inorg. Chem. 1988, 27, 971-973; c) N. Cox, W. Ames,
B. Epel, L. V. Kulik, L. Rapatskiy, F. Neese, J. Messinger, K.
Wieghardt, W. Lubitz, Inorg. Chem. 2011, 50, 8238-8251; d) Y. Sano,
A. C. Weitz, J. W. Ziller, M. P. Hendrich, A. S. Borovik, Inorg. Chem.
2013, 52, 10229-10231.
12-TMC
=
1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane; 13-TMC
=
1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclotridecane; 14-TMC
tetramethyl-1,4,8,11-tetraazacyclotetradecane. L7py2
pyridylmethyl)-1,4-diazepane; L7py24-Me = 1,4-bis(4-methyl-2-pyridylmethyl)-1,4-
diazepane; L8py2H = 1,5-bis(2-pyridylmethyl)-1,5-diazacyclooctane.
=
1,4,8,11-
6-Me
= 1,4-bis(6-methyl-2-
Conclusions. We prepared and characterized a meta-stable
MnIIMnIII-peroxide complex from the reaction between a Mn2
II
complex and superoxide anion, mimicking the postulated
biochemistry of the class Ib Mn2 RNRs. The complex displayed
features typical of a MnIIMnIII-peroxide complex by electronic
absorption, EPR, and XAS spectroscopies, and mass
spectrometry. Interestingly, 2 was found to be an efficient
nucleophilic aldehyde deformylation reagent, exhibiting
comparable reaction rates to previously reported mononuclear
Mn-peroxide complexes. To the best of our knowledge this is the
first example of a reactive Mn2-peroxide entity, and furthermore
demonstrates that an electropositive species (H+ for RNRs,
electrophilic aldehyde for 2) is required to activate the peroxide
core in RNRs.
[11] a) T. C. Weng, W. Y. Hsieh, E. S. Uffelman, S. W. Gordon-Wylie, T. J.
Collins, V. L. Pecoraro, J. E. Penner-Hahn, J. Am. Chem. Soc. 2004,
126, 8070-8071; b) F. Farges, Phys. Rev. B 2005, 71; c) R. E.
Schreiber, H. Cohen, G. Leitus, S. G. Wolf, A. Zhou, L. Que, Jr., R.
Neumann, J. Am. Chem. Soc. 2015, 137, 8738-8748.
[12] M. Roemelt, M. A. Beckwith, C. Duboc, M. N. Collomb, F. Neese, S.
DeBeer, Inorg. Chem. 2012, 51, 680-687.
[13] G. Dräger, T. Kirchner, S. Bocharov, C. C. Kao, Appl. Phys. A Mater.
Sci. Process 2001, 73, 687-691.
[14] J. A. Rees, V. Martin-Diaconescu, J. A. Kovacs, S. DeBeer, Inorg.
Ackowledgments: This publication has emanated from research
supported by the Irish Research Council (IRC) under Grant
Chem. 2015, 54, 6410-6422.
Numbers
GOIPG/2014/942
to
A.
Magherusan
and
[15] G. Strukul, Angew. Chem. Int. Ed. 1998, 37, 1198-1209.
[16] P. Pirovano, A. M. Magherusan, C. McGlynn, A. Ure, A. Lynes, A. R.
McDonald, Angew. Chem. Int. Ed. 2014, 53, 5946-5950.
[17] a) Y. Jo, J. Annaraj, M. S. Seo, Y. M. Lee, S. Y. Kim, J. Cho, W. Nam,
J. Inorg. Biochem. 2008, 102, 2155-2159; b) J. Annaraj, J. Cho, Y. M.
Lee, S. Y. Kim, R. Latifi, S. P. de Visser, W. Nam, Angew. Chem. Int.
Ed. 2009, 48, 4150-4153; c) J. Cho, R. Sarangi, J. Annaraj, S. Y. Kim,
M. Kubo, T. Ogura, E. I. Solomon, W. Nam, Nat. Chem. 2009, 1, 568;
d) J. Cho, R. Sarangi, H. Y. Kang, J. Y. Lee, M. Kubo, T. Ogura, E. I.
Solomon, W. Nam, J. Am. Chem. Soc. 2010, 132, 16977-16986.
[18] M. S. Seo, J. Y. Kim, J. Annaraj, Y. Kim, Y. M. Lee, S. J. Kim, J. Kim,
W. Nam, Angew. Chem. Int. Ed. 2007, 46, 377-380.
GOIPG/2017/525 to D. Nelis. Research in the McDonald lab is
supported in part by the European Union (ERC-2015-STG-
678202) and research grants Science Foundation Ireland
(SFI/15/RS-URF/3307, SFI/17/RS-EA/3470). Support for this
research in the Que lab has been provided by the US National
Institutes of Health (GM38767). XAS measurements benefited
from support of SSRL by the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences under Contract No.
DE-AC02-76SF00515, as well as support of the SSRL Structural
Molecular Biology Program through the DOE Office of Biological
[19] J. Du, D. Xu, C. Zhang, C. Xia, Y. Wang, W. Sun, Dalton. Trans. 2016,
45, 10131-10135.
This article is protected by copyright. All rights reserved.