Visible-Light-Induced Metal-Free Allylic Oxidation Utilizing a Coupled Photocatalytic System
[4] a) Y. Wang, J. Yao, H. R. Li, D. S. Su, M. Antonietti, J.
General Procedure for the Oxidation of the
Substrates in Table 2
Am. Chem. Soc. 2011, 133, 2362; b) F. Goettmann, A.
Fischer, M. Antonietti, A. Thomas, Angew. Chem.
2006, 118, 4579; Angew. Chem. Int. Ed. 2006, 45, 4467;
c) F. Goettmann, A. Fischer, M. Antonietti, A. Thomas,
New. J. Chem. 2007, 31, 1455; d) F. Goettmann, A.
Thomas, M. Antonietti, Angew. Chem. 2007, 119, 2773;
Angew. Chem. Int. Ed. 2007, 46, 2717; e) X. Jin, V. Ba-
lasubramanian, S. Selvan, D. Sawant, M. Chari, G. Q.
Lu, A. Vinu, Angew. Chem. 2009, 121, 8024; Angew.
Chem. Int. Ed. 2009, 48, 7884.
In a typical oxidation of the substrates in Table 2, 10 mmol
of substrate, 100 mg of g-C3N4, 1 mmol of NHPI and of
20 mL acetonitrile were added into a 50-mL three-neck,
round-bottom reactor, which was fitted with a magnetic stir-
rer and an O2 inlet tube. The reaction was performed at
608C in a oil bath with fast stirring. The oxygen was flowing
into the reactor at a constant flow rate (20 mLminÀ1). After
completion of the reaction, g-C3N4 was filtered and then the
reaction mixture was injected into the GC for analysis with
benzyl ethanoate as the internal standard. The products
were confirmed by comparison with standard chemicals and
GC-MS.
[5] a) F. Z. Su, S. Mathew, G. lipner, X. Z. Fu, M. Anto-
nietti, S. Blechert, X. C. Wang, J. Am. Chem. Soc. 2010,
132, 16299; b) F. Z. Su, S. Mathew, L. Mçhlmann, M.
Antonietti, X. C. Wang, S. Blechert, Angew. Chem.
2011, 123, 683; Angew. Chem. Int. Ed. 2011, 50, 657.
[6] a) Y. Wang, J. S. Zhang, X. C. Wang, M. Antonietti,
H. R. Li, Angew. Chem. 2010, 122, 3428; Angew. Chem.
Int. Ed. 2010, 49, 3356; b) Y. Wang, H. R. Li, J. Yao,
X. C. Wang, M. Antonietti, Chem. Sci. 2011, 2, 446;
c) Y. Wang, Y. Di, M. Antonietti, H. R. Li, X. F. Chen,
X. C. Wang, Chem. Mater. 2010, 22, 5120.
[7] a) C. Galli, P. Gentili, O. Lanzalunga, M. Lucarini,
G. F. Pedulli, Chem. Commun. 2004, 2356; b) P. Brandi,
C. Galli, P. Gentili, J. Org. Chem. 2005, 70, 9521; c) E.
Baciocchi, M. Bietti, M. D. Fusco, O. Lanzalunga, D.
Raponi, J. Org. Chem. 2009, 74, 5576; d) E. Baciocchi,
M. Bietti, O. Lanzalunga, A. Lapi, D. Raponi, J. Org.
Chem. 2010, 75, 1378; e) R. Sheldon, I. C. E. Arends,
Adv. Synth. Catal. 2004, 346, 1051; f) Y. Ishii, K. Na-
kayama, M. Takeno, S. Sakaguchi, T. Iwahama, Y. Nish-
iyama, J. Org. Chem. 1995, 60, 3935; g) G. Cantarella,
C. Galli, P. Gentili, J. Mol. Catal. B: Enzym. 2003, 22,
135.
[8] a) Y. Ishii, T. Iwahama, S. Sakaguchi, K. Nakayama, Y.
Nishiyama, J. Org. Chem. 1996, 61, 4520; b) S. Coseri,
Catal. Rev. 2009, 51, 218.
[9] a) S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir 2009, 25,
10397; b) S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir 2010,
26, 3897; c) S. C. Yan, S. B. Lv, Z. S. Li, Z. G. Zou,
Dalton Trans. 2010, 39, 1488.
[10] a) E. C. McLaughlin, H. Choi, K. Wang, G. Chiou,
M. P. Doyle, J. Org. Chem. 2009, 74, 730; b) J. A. R.
Salvador, J. H. Clark, Green Chem. 2002, 4, 352; c) Z.
Yao, X. B. Hu, J. Y. Mao, H. R. Li, Green Chem. 2009,
11, 2013; d) M. A. Fousteris, A. I. Koutsourea, S. S. Ni-
kolaropoulos, A. Riahi, J. Muzart, J. Mol. Catal. A:
Chem. 2006, 250, 70.
[11] a) N. Koshino, Y. Cai, J. H. Espenson, J. Phys.
Chem. A. 2003, 107,4262; b) B. Saha, N. Koshino, J. H.
Espenson, J. Phys. Chem. A. 2004, 108, 425; c) Y. Sun,
W. Zhang, X. Hu, H. Li, J. Phys. Chem. B. 2010, 114,
4862.
Reuse of g-C3N4
When the first oxidation had finished, after cooling down
the reaction mixture to room temperature, g-C3N4 was sepa-
rated by filtration. The yellow solid was washed with 0.2M
NaOH and then dried in a vacuum oven at 1008C for 12 h.
Finally, the recovered g-C3N4 was used in a subsequent reac-
tion.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (Nos. 20990221, 20803062 and
J0830413). The authors are grateful to Zhejiang NHU Com-
pany Ltd, China, for financial support.
References
[1] a) F. Recupero, C. Punta, Chem. Rev. 2007, 107, 3800;
b) T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev.
2005, 105, 2330; c) J. Y. Mao, N. Li, H. R. Li, X. B. Hu,
J. Mol. Catal. A: Chem. 2006, 258; d) C. M. Wang,
W. H. Guan, P. H. Xie, X. Yun, H. R. Li, X. B. Hu, Y.
Wang, Catal. Commun. 2009, 10, 725.
[2] a) K. Weissermel, H. J. Arpe, Industrial Organic
Chemistry, 3rd Completely Revised Edition, VCH,
Weinheim, 1997; G. W. Parshall, S. D. Ittel, Homogene-
ous Catalysis, 2nd edn., John Wiley and Sons, New
York, 1992, p 246.
[3] a) R. H. Fan, D. M. Pu, F. Q. Wen, J. Wu, J. Org. Chem.
2007, 72, 8994; b) X. L. Tong, J. Xu, H. Miao, Adv.
Synth. Catal. 2005, 347, 1953; c) J. Zhang, Z. Wang, Y.
Wang, C. Wan, X. Zheng, Z. Wang, Green Chem. 2009,
11, 1973; d) C. M. Wang, G. L. Wang, J. Y. Mao, Z.
Yao, H. R. Li, Catal. Commun. 2010, 11, 758; e) G. Y.
Yang, Y. F. Ma, J. Xu, J. Am. Chem. Soc. 2004, 126,
10542; f) G. Zheng, C. Liu, Q. Wang, M. Wang, G.
Yang, Adv. Synth. Catal. 2009, 351, 2638; g) K. Matsu-
naka, T. Iwahama, S. Sakaguchi, Y. Ishii, Tetrahedron.
Lett. 1999, 40, 2165; h) C. Einhorn, J. Einhorn, C. Mar-
cadal, J. Pierre, Chem. Commun. 1997, 447; i) R. Naka-
mura, Y. Obora, Y. Ishii, Chem. Commun. 2008, 3417.
[12] a) Stamicarbon, European Patent EP 0092867, 1983;
b) X. X. Song, Y. X. Li, W. Wu, S. B. Fu, P. Yang, Hua-
gong Jinzhan. 2004, 23, 322.
[13] J. R. Harbour, M. L. Hair, J. Phys. Chem. 1978, 82,
1397.
Adv. Synth. Catal. 2011, 353, 1447 – 1451
ꢁ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1451