4
Tetrahedron
Conclusions
Lett. 2011, 52, 3963-3968; (c) Kumada, M. Pure Appl. Chem. 1980, 52,
69-679; (d) Negishi, E. Acc. Chem. Res. 1982, 15, 340-348; (e) Hiyama,
6
Ferrocene catalysed C-H arylation of benzene using
T.; Hatanaka, Y. Pure. Appl. Chem. 1994, 66, 1471-1478; (f) Stille, J. K.
Angew, Chem. Int. Ed. Emgl. 1986, 25, 508-524.
phenyldiazonium tetrafluoroborate is studied. Yields of biphenyl
derivatives in this reaction were found to be better than some of
the known methods. Aryl radical formation is studied by cyclic
voltammetry of aryldiazonium tetrafluoroborate. More radical
formation was observed in the presence of ferrocene.
Applicability of this reaction is tested on several arenes and
heteroarene such as benzene, naphthalene, anthracene, pyrene
and pyridine. This reaction model works at ambient temperature
and features the use of inexpensive ferrocene as catalyst.
7
.
(a) Seiple, I. B.; Su, S.; Rodriguez, R. A.; Gianatassio, R.; Fujiwara, Y.;
Sobel. A. L. Baran, P. S. J. Am. Chem. Soc. 2010, 132, 13194-13196; (b)
Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Fuder, E. D.; Dixon, D. D.;
Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.;
Ishihara, Y.; Baran, P. S. Nature, 2012, 492, 95-99; (c) Baxter, R. D.;
Liang, Y.; Hong, X.; Brown, T. A.; Zare, R. N.; Houk, K. N.; Baran, P.
S.; Blackmond, D. G. ACS Central Science, 2015, 1, 456-462, (d) Shin,
K.; Park, S-W, Chang, S. J. Am chem. Soc., 2015, 137, 8584-8592.
Potavathri, S; Kantak, A. DeBoef, B. Chem Commun. 2011, 47, 4679-
8
9
.
.
4
681.
(a) Agarwal, N.; Nayak, P. K. Tetrahedron Letters, 2008, 49, 2710-2713;
b) Agarwal, N.; Patil, M.; Patil, M, RSC Adv, 2015, 5, 98447-98455;(c)
(
Supporting Information:
Gao, N.; Senevirathana, W.; Sauve, G. Org. Lett. 2011, 13, 5354-5357
(d) Wu, W.; Zhao, J.; Guo, H.; Sun, J.; Ji, S.; Wang, Z. Chem. Eur. J.
Synthesis, characterization data, NMR, MALDI and FTIR
spectra of selected compounds are given in supporting
information.
2
012, 18, 1961-1968.
1
0. (a) Join, B.; Yamamoto, T.; Itami, K. Angew. Chem., Int. Ed. 2009, 48,
3644-3647; (b) Yanagisawa, S.; Ueda, K.; Taniguchi, T.; Itami, K. Org.
Lett. 2008, 10, 4673-4676; (c) Deng, G.; Ueda, K.; Yanagisawa, S.;
Itami, K.; Li, C.-J. Chem. Eur. J. 2009, 15, 333-337; (d) Yanagisawa,S.;
Itami, K. Chem Cat Chem. 2011, 3, 827-829.
Acknowledgements
Centre for Excellence in Basic Sciences, Mumbai is thanked for
providing research facilities. We also thank Tata Institute of
Fundamental Research, Mumbai for providing the NMR and
MALDI-TOF facilities.
11. (a) Sun, C.-L.; Li, H.; Yu, D.-G.; Yu, M.; Zhou, X.; Lu, X.-Y.; Huang,
K.; Zheng, S.-F.; Li, B.-J.; Shi, Z.-J. Nat. Chem. 2010, 2, 1044-1049; (b)
Sun, C.-L.; Gu, Y.-F.; Wang, B.; Shi, Z.-J. Chem. Eur. J. 2011, 17,
1
0844-10847; (c) Sun, C.-L.; Gu, Y.-F.; Huang, W.-P.; Shi, Z.-J. Chem.
Commun. 2011, 47, 9813-9815.
1
1
2. Shirakawa, E.; Itoh, K.; Higashino, T.; Hayashi, T. J. Am. Chem. Soc.
2
010, 132, 15537-15539.
References and notes
3. (a) Kolli, S. K.; Prasad, B.; Babu, P. V.; Ashfaq, M. A.; Ehtesham, N. Z.;
Raju, R. R.; Pal, M. Org. Biomol. Chem. 2014, 12, 6080-6084; (b) Wu,
Y.; Choy, P. Y.; Kwong, F. Y. Org. Biomol. Chem. 2014, 12, 6820-6823;
(c) Yanagishawa, S.; Ueda, K.; Taniguchi, T.; Kenichiro, I. Org let 2008,
10, 4673-4676..
1
.
(a) Qiu, L.; Wu, J.; Chan, S.; Au-Yeung, T.T-L.; Ji, J-X.; Guo, R.; Pai,
C-C.; Zhou, Z.; Li, X.; Fan, Q-H.; Chan, A. S. C. Proc. Nat. Acad. Sc.
2
004, 101, 5815-5820; (b) Uberman, P. M.; Lanteri, M. N.; Parajon
Puenzo, SC.; Martin, S. E. Dalton Trans. 2011, 40, 9229-9237; (c)
Parsons, A. S.; Garcia, J. M.; Snieckus, V. Tetrahedron Lett. 1994, 35,
14. (a) Qiu, Y.; Liu, Y.; Yang, K.; Hong, W.; Li, Z.; Wang, Z.; Yao, Z.;
Jiang, S. Org. Lett. 2011, 13, 3556-3559; (b) Chen, W.-C.; Hsu, Y.-C.;
Shih, W.-C.; Lee, C.-Y.; Chuang, W.-H.; Tsai, Y.-F.; Chen, P. P.-Y.;
Ong, T.-G. Chem. Commun. 2012, 48, 6702-6704; (c) Xu, Z.; Gao, L.;
Wang, L.; Gong, M.; Wang, W.; yuan, R. ACS Catal. 2015, 5, 45-50.
15. (a) Rossi, R. A.; Pierini, A. B.; Penenory, A. B. Chem. Rev. 2003, 103,
71; (b) ꢀꢁdꢂn, M. E.; Guastavino, J. F.; Rossi, R. A. Org. lett. 2013, 15,
1174-1177; (c) Cheng, Y.; Gu, X.; Li, P. Org. Lett. 2013, 15, 2664-2667.
16. (a) Hari, D. P.; Schroll, P.; Konig, B, J. Am. Chem, Soc. 2012, 134, 2958-
2961; (b) Ng, Y. S.; Chan, C. S.; Chan, K. S. Tetrahedron Lett. 2012, 53,
3911-3914; (c) Xue, Z.-L.; Qian, Y. Y.; Chan, K. S. Tetrahedron Lett.
2014, 55, 6180-6183; (d) Gai, L.; To, C. T.; Chan, K. S. Tetrahedron
Lett. 2014, 55, 6373-6376; (e) Kwok, T. Y.; Sonnenschein, To, C. T.;
Liu, J.; Chan, K. S. Tetrahedron, 2016, 72, 2719-2724.
17. (a) Bhakuni, B. S.; Kumar,A.; Balkrishna, S. J.; Sheikh, J. A.; Konar, S.;
Kumar, S. Org. Lett. 2012, 14, 2838-2841; (b) Kumar, A.; Yadav, A.;
Verma, A.; Jana, S.; Sattar, M.; Kumar, S.; Prasad, C. D.; Kumar, S.
Chem. Commun. 2014, 50, 9481-9484; (c) Kumar, S.; Rathore, V.;
Verma, A.; Prasaad, C. D.; Kumar, A.; Yadav, A.; Jana, S.; Sattar, M.;
Meenakshi, Kumar, S. Org. Lett. 2015, 17, 82-85
7
537-7540; (d) Imai, Y.; Zhang, W.; Kida, T.; Nakatsuji, Y.; Ikeda, I. J.
Org. Chem. 2000, 65, 3326-3333; (e) Palmer, B. D.; Thopson, A. M.;
Sutherland, H. S.; Blaser, A.; Kumentova, I.; Franzblau, S. G.; Wan,
Baojie, Wang, Y.; Ma, Z.; Denny, W. A. J. Med. Chem. 2010, 53, 282-
2
94; (f) Jiang, Z.; Xu, X.; Zhang, Z.; Yang, C.; Liu, Z.; Tao, Y.; Qina, J.;
Ma, D. J. Mater. Chem. 2009, 19, 7661-7665; (g) Wexler, R. R.;
Greenlee, W. J.; Irvin, J. D.; Goldberg, M. R.; Prendergast, K.; Smith, R.
D.; Timmermans, P. B. M. W. M. J. Med. Chem. 1996, 39, 625-656.
(a) Manka, J. T.; Fuo, F.; Huang, J.; Yin, H.; Farrar, J. M.; Sienkowska,
M.; Benin, V. Kaszynski, P. J. Org. Chem. 2003, 68, 9574-9588;
2
3
.
.
(b).Kuo, C-H.; Li, T-Y.; Lien, C-H.; Liu, C-H.; Wu, F-I. J. Mater.
Chem., 2009, 19, 1865-1871; (c) Kai, H.;Ohshita, J.; Ohara, S.;
Nakayama, N.; Kunai, A.; Lee, I-S.; Kwak, Y-W. J. Organometallic
Chem. 2008, 693, 3490-3494; (d) Park, J. K.; Lee, K. H.; Kang, S.; Lee,
J. Y.; Park, J. S. Seo, J. H.; Kim, Y. K. Yoon, S. S. Organic Electronics,
2
010, 11, 905-915.
Shine, H. J.; Zmuda, H.; Park, K. H.; Kwart, H.; Horgan, A. G.; Collins,
C.; Maxwell, B. E. . J. Am. Chem. Soc. 1981, 103, 955-956.
4
5
.
.
Necula, A.; Scott, L. T. J. Am. Chem. Soc. 2000, 122, 1548-1549.
(a) Hassan, J.; Sevignon, M.; Gozzi, C.; Shulz, E.; Lemaire, M. Chem.
Rev. 2002, 102, 1359-1470; (b) Ballard, C. E. J. Chem. Edu. 2011, 88,
18. Xu, Z.; Gao, L.; Wang, L.; Gong, M.; Wang, W.; Yuan, R. ACS Catal.
2015, 5, 45-50.
19. (a) Verbelen, B.; Boodts, S.; Hofkens, J.; Boens, N.; Dehaen, W. Angew
Chem, 2015, 54, 4612-4616; (b) Dixit, S.; Patil, M.; Agarwal, N. RSC
Adv., 2016, 6, 47491-47497.
20. Geiger, W. E.; Connelly, N. G. Chem. Rev. 1996, 96, 877-910.
21. (a) Allongue, P.; Delamar, M.; Desbat, B.; Fagebaume, O.; Hitmi, R.;
Pinson J.; Saveant, J.-M. J. Am. Chem. Soc. 1997, 119, 201; (b)
Andrieux, C. P.; Pinson, J. J. Am. Chem. Soc., 2003, 125, 14801-14806.
1
3
2
148-1151; (c) Kovacic, P.; Jones, M. B.; Chem. Rev. 1987, 87, 357-
79; (d) Gomberg, M.; Bachmann, W. E. J. Am. Chem. Soc. 1924, 42,
339-2343. (e) Smith, M. B.; March, J. (2007), Advanced Organic
Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York:
Wiley-Interscience.
(a) Kotha, S.; Lahiri, K.; Kashinath D. Tetrahedron 2002, 58 9633-9663;
6
.
(
b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.Spencer, J.;
Baltus, C. B.; Press, N. J.; Harrington, R. W.; Clegg, W. Tetrahedron.