Paper
RSC Advances
S. A. Heras, R. de Gelder, P. W. N. M. van Leeuwen,
H. Hiemstra, J. N. H. Reek and J. H. van Maarseveen, Org.
Lett., 2006, 8, 3227–3230; (d) S.-i. Fukuzawa, H. Oki,
M. Hosaka, J. Sugasawa and S. Kikuchi, Org. Lett., 2007, 9,
5557–5560.
References
1 (a) P. Braunstein and F. Naud, Angew. Chem., Int. Ed., 2001,
40, 680–699; (b) R. J. Long, V. C. Gibson, A. J. P. White and
D. J. Williams, Inorg. Chem., 2006, 45, 511–513; (c)
N. Dwadnia, J. Roger, N. Pirio, H. Cattey and J.-C. Hierso,
Coord. Chem. Rev., 2018, 355, 74–100.
13 B. Choubey, L. Radhakrishna, J. T. Mague and
M. S. Balakrishna, Inorg. Chem., 2016, 55, 8514–8526.
14 L. Bonnafoux, L. Ernst, F. R. Leroux and F. Colobert, Eur. J.
Inorg. Chem., 2011, 2011, 3387–3397.
2 E. M. Schuster, M. Botoshansky and M. Gandelman,
Organometallics, 2009, 28, 7001–7005.
15 (a) M. Ardon, G. Hogarth and D. T. W. Oscro, J. Organomet.
Chem., 2004, 689, 2429–2435; (b) D. F. Brayton and
D. M. Heinekey, Organometallics, 2008, 27, 3901–3906.
16 (a) Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120,
215–241; (b) Y. Zhao and D. G. Truhlar, Acc. Chem. Res.,
2008, 41, 157–167.
3 M. Hirotsu, K. Santo, Y. Tanaka and I. Kinoshita, Polyhedron,
2018, 143, 201–208.
4 (a) E. Poverenov, M. Gandelman, L. J. W. Shimon,
H. Rozenberg, Y. Ben-David and D. Milstein,
Organometallics, 2005, 24, 1082–1090; (b) R. Lindner, B. van
den Bosch, M. Lutz, J. N. H. Reek and J. I. van der Vlugt,
Organometallics, 2011, 30, 499–510; (c) G. Mancano,
M. J. Page, M. Bhadbhade and B. A. Messerle, Inorg. Chem.,
2014, 53, 10159–10170; (d) A. Ghisol, A. Waldvogel,
L. Routaboul and P. Braunstein, Inorg. Chem., 2014, 53,
5515–5526.
´
17 (a) P. Fuentealba, H. Preuss, H. Stoll and L. Von Szentpaly,
Chem. Phys. Lett., 1982, 89, 418–422; (b) D. Andrae,
¨
U. Haußermann, M. Dolg, H. Stoll and H. Preuß, Theor.
Chim. Acta, 1990, 77, 123–141.
18 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. L. Caricato,
X. H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd,
E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi,
J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam,
M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and
D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc.,
Wallingford, CT, 2013.
5 (a) V. Balzani, A. Credi and M. Venturi, Molecular Devices and
Machines, Wiley-VCH, New York, 2nd edn, 2008; (b) D. Kalny,
M. Elhabiri, T. Moav, A. Vaskevich, I. Rubinstein, A. Shanzer
and A.-M. Albrecht-Gary, Chem. Commun., 2002, 1426–1427.
6 (a) J. R. Dilworth and N. Wheatley, Coord. Chem. Rev., 2000,
199, 89–158; (b) S. Kumar, G. Mani, S. Mondal and
P. K. Chattaraj, Inorg. Chem., 2012, 51, 12527–12539.
7 (a) P. Espinet and K. Soulantica, Coord. Chem. Rev., 1999,
193, 499–556; (b) C. Zeng, N. Wang, T. Peng and S. Wang,
Inorg. Chem., 2017, 56, 1616–1625.
8 (a) Y. Canac, N. Debono, L. Vendier and R. Chauvin, Inorg.
Chem., 2009, 48, 5562–5568; (b) I. Abdellah, Y. Canac,
C. D. Mboyi, C. Duhayon and R. Chauvin, J. Organomet.
Chem., 2015, 776, 149–152; (c) S. A. Bhat, M. K. Pandey,
J. T. Mague and M. S. Balakrishna, Dalton Trans., 2017, 46,
227–241.
´
9 (a) A. Otero, F. Carrillo-Hermosilla, P. Terreros, T. Exposito,
´
˜
´
S. Rojas, J. Fernandez-Baeza, A. Antinolo and I. Lopez-Solera,
Eur. J. Inorg. Chem., 2003, 2003, 3233–3241; (b) S. A. Bhat,
J. T. Mague and M. S. Balakrishna, Dalton Trans., 2015, 44,
17696–17703; (c) S. A. Bhat, J. T. Mague and
M. S. Balakrishna, Inorg. Chim. Acta, 2016, 443, 243–250.
19 D. A. Zhurko and G. A. Zhurko, ChemCra 1.5; Plimus, San
20 S. Leonid, Chemissian 1.7, 2005–2010, Available at http://
`
21 I. Fleming, Frontier Orbital and OrganicChemical Reactions,
John Wiley & Sons, New York, 1976.
10 (a) T. Benincori, E. Brenna, F. Sannicolo, L. Trimarco,
P. Antognazza, E. Cesarotti, F. Demartin and T. Pilati, J.
Org. Chem., 1996, 61, 6244–6251; (b) N. G. Andersen,
M. Parvez and B. A. Keay, Org. Lett., 2000, 2, 2817–2820.
11 (a) D. M. Zink, T. Grab, T. Baumann, M. Nieger, E. C. Barnes,
22 (a) Q.-S. Li, C.-Q. Wan, R.-Y. Zou, F.-B. Xu, H.-B. Song,
X.-J. Wan and Z.-Z. Zhang, Inorg. Chem., 2006, 45, 1888–
1890; (b) Q.-L. Ni, X.-F. Jiang, T.-H. Huang, X.-J. Wang,
L.-C. Gui and K.-G. Yang, Organometallics, 2012, 31, 2343–
2348.
¨
W. Klopper and S. Brase, Organometallics, 2011, 30, 3275–
3283; (b) D. M. Zink, T. Baumann, J. Friedrichs, M. Nieger
¨
23 R. J. Lundgren, M. A. Rankin, R. McDonald, G. Schatte and
M. Stradiotto, Angew. Chem., Int. Ed., 2007, 46, 4732–4735.
24 C. K. Seubert, Y. Sun and W. R. Thiel, Dalton Trans., 2009,
4971–4977.
and S. Brase, Inorg. Chem., 2013, 52, 13509–13520; (c)
¨
D. M. Zink, D. Volz, T. Baumann, M. Mydlak, H. Flugge,
J. Friedrichs, M. Nieger and S. Brase, Chem. Mater., 2013,
25, 4471–4486.
¨
25 H. Schmidbaur and A. Schier, Chem. Soc. Rev., 2012, 41, 370–
412.
26 (a) J. Zhang, L. Li, Y. Wang, W. Wang, J. Xue and Y. Li, Org.
Lett., 2012, 14, 4528–4530; (b) M. Heravi, V. Zadsirjan,
12 (a) D. Liu, W. Gao, Q. Dai and X. Zhang, Org. Lett., 2005, 7,
4907–4910; (b) Q. Dai, W. Gao, D. Liu, L. M. Kapes and
X. Zhang, J. Org. Chem., 2006, 71, 3928–3934; (c) R. J. Detz,
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 25704–25718 | 25717