ChemComm
Communication
Notes and references
1 D. O’Hagan, Chem. Soc. Rev., 2008, 37, 308.
2 (a) P. Jeschke, ChemBioChem, 2004, 5, 570; (b) K. Mu¨ller, C. Faeh and
F. Diederich, Science, 2007, 317, 1881.
3 S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem. Soc.
Rev., 2008, 37, 320.
4 P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applica-
tions, Wiley, Weinheim, 2004, ch. 4, pp. 203–277.
5 (a) L. E. Zimmer, C. Sparr and R. Gilmour, Angew. Chem., Int. Ed., 2011,
50, 11860; (b) K. M. Lippert, K. Hof, D. Gerbig, D. Ley, H. Hausmann,
S. Guenther and P. R. Schreiner, Eur. J. Org. Chem., 2012, 5919, and
references therein.
Scheme 2
6 (a) T. Furuya, A. S. Kamler and T. Ritter, Nature, 2011, 473, 470;
(b) O. A. Tomashenko and V. V. Grushin, Chem. Rev., 2011, 111, 4475;
(c) J.-A. Ma and D. Cahard, J. Fluorine Chem., 2007, 128, 975.
7 Selected reviews: (a) J.-A. Ma and D. Cahard, Chem. Rev., 2008,
108, PR1; (b) N. Shibata, S. Mizuta and H. Kawai, Tetrahedron:
Asymmetry, 2008, 19, 2633; (c) J. Nie, H.-C. Guo, D. Cahard and J.-A.
Ma, Chem. Rev., 2011, 111, 455.
8 b-Trifluoromethyl amines 5 are often subunits of more complex structures
used in biological studies. See for examples: (a) W. H. Romines, R. S.
Kania, J. Lou, M. R. Collins, S. J. Cripps, M. He, R. Zhou, C. L. Palmer and
J. G. Deal, PCT WO 106462, 2003; (b) J. J. Cui, D. Bhumralkar, I. Botrous,
J. Y. Chu, L. A. Funk, C. E. Hanau, G. D. Harris Jr., L. Jia, J. Johnson,
S. A. Kolodziej, P.-P. Kung, X.(S.) Li, J.(Q.) Lin, J. J. Meng, M. D. Nambu,
C. G. Nelson, M. A. Pairish, H. Shen, M. Tran-Dube, A. Walter, F.-J. Zhang
and J. Zhang, PCT WO 076412, 2004; (c) J. K. Long, PCT WO 126283, 2013;
(d) N. Meurice, L. Wang, C. A. Lipinski, Z. Yang, C. Hulme and J. C. Loftus,
J. Med. Chem., 2010, 53, 669.
9 (a) D. A. Nagib, M. E. Scott and D. W. C. MacMillan, J. Am. Chem.
Soc., 2009, 131, 10875; (b) A. A. Allen and D. W. C. MacMillan, J. Am.
Chem. Soc., 2010, 132, 4986; catalytic asymmetric synthesis of
CF3-aziridines: (c) Z. Chai, J.-P. Bouillon and D. Cahard, Chem.
Commun., 2012, 48, 9471.
10 Selected reviews: (a) M. S. Taylor and E. N. Jacobsen, Angew. Chem.,
Int. Ed., 2006, 45, 1520; (b) Z. Zhang and P. R. Schreiner, Chem. Soc.
Rev., 2009, 38, 1187; (c) R. R. Knowles and E. N. Jacobsen, Proc. Natl.
Acad. Sci. U. S. A., 2010, 107, 20678.
11 (a) J.-R. Gao, H. Wu, B. Xiang, W.-B. Yu, L. Han and Y.-X. Jia, J. Am.
Chem. Soc., 2013, 135, 2983; (b) H. Wu, R.-R. Liu and Y.-X. Jia,
Synlett, 2014, 457; (c) C.-H. Ma, T.-R. Kang, L. He and Q.-Z. Liu, Eur.
J. Org. Chem., 2014, 3981; (d) F.-L. Liu, J.-R. Chen, B. Feng, X.-Q. Hu,
L.-H. Ye, L.-Q. Lu and W.-J. Xiao, Org. Biomol. Chem., 2014, 12, 1057.
Scheme 3
Building upon the previously determined conformations and
mode of action of amido-thiourea catalysts related to 3c,14a it is
possible to propose a tentative reaction model, involving the double
coordination and resulting stabilisation of a dipolar transition state
of the reaction leading to the (R)-adducts 4 (Scheme 3). In this
speculative model, the thiourea moiety binds and stabilises the
negative charge at the nitro group, whereas the amide oxygen
coordinates the Hantzsch ester at its NH proton, positively charged
during the hydride-transfer step. An irreversible proton transfer then
leads to the reaction products ((R)-4 and the pyridine derivative), with
concomitant release of the catalyst. Regardless of the structural
accuracy of this model, it might serve to visualise that stereo- 12 Catalytic asymmetric transfer hydrogenation of nitroalkenes with
Hantzsch esters: (a) N. J. A. Martin, L. Ozores and B. List, J. Am.
Chem. Soc., 2007, 129, 8976; (b) N. J. A. Martin, X. Cheng and B. List,
J. Am. Chem. Soc., 2008, 130, 13862; (c) J. F. Schneider, M. B. Lauber,
selectivity in this and related reactions of nitroalkenes with Hantzsch
esters 212 is not due to steric clashes between the catalyst and
substrates, but mainly due to a good geometrical fit between the
functionalities of the catalyst and a transition state leading to
(R)-products, which are electrostatically complementary. Therefore,
such a model in which the catalyst interacts simply with the nitro
and the NH functionalities explains both the tolerance of the
reactions to substrates featuring different steric properties (aromatic
and aliphatic substrates) and the observation previously reported
that the major enantiomer obtained in these transfer hydrogenation
reactions depends on nitroalkene geometry12b and not on the steric
hindrance displayed by the substituents at the pro-chiral centre (i.e.
(E)-nitroalkenes give (R)-products and (Z)-nitroalkenes (S)-products).
In conclusion, we have developed a catalytic asymmetric
approach to b-trifluoromethyl amines 5 featuring unprecedented
directness and generality, by demonstrating that a simple thiourea
catalyst can promote the reaction between b-trifluoromethyl
nitroalkenes 1 and Hantzsch ester 2 in a highly enantioselective
fashion.
V. Muhr, D. Kratzer and J. Paradies, Org. Biomol. Chem., 2011,
9, 4323; (d) J. C. Anderson and P. J. Koovits, Chem. Sci., 2013,
¨
4, 2897; (e) J. F. Schneider, F. C. Falk, R. Frohlich and J. Paradies,
Eur. J. Org. Chem., 2010, 2265; ( f ) L.-A. Chen, W. Xu, B. Huang,
J. Ma, L. Wang, J. Xi, K. Harms, L. Gong and E. Meggers, J. Am.
Chem. Soc., 2013, 135, 10598; non enantioselective reaction:
(g) Z. Zhang and P. R. Schreiner, Synthesis, 2007, 2559.
13 Selected reviews on organocatalytic transfer hydrogenation reactions
with Hantzsch esters: (a) M. Rueping, J. Dufour and F. R. Schoepke,
Green Chem., 2011, 13, 1084; (b) S. G. Ouellet, A. M. Walij and
D. W. C. MacMillan, Acc. Chem. Res., 2007, 40, 1327; (c) C. Zheng
and S.-L. You, Chem. Soc. Rev., 2012, 41, 2498; (d) L. Bernardi,
M. Fochi, M. Comes Franchini and A. Ricci, Org. Biomol. Chem.,
2012, 10, 2911.
14 (a) S. J. Zuend and E. N. Jacobsen, J. Am. Chem. Soc., 2009,
131, 15358; (b) S. J. Zuend, M. P. Coughlin, M. P. Lalonde and
E. N. Jacobsen, Nature, 2009, 461, 968.
15 For a tentative rationalisation of the superior behaviour of tert-butyl
Hantzsch ester 2d in organocatalytic asymmetric reactions, see
ref. 13b. It must also be noted that tert-butyl ester 2d features
improved solubility in apolar solvents, compared to 2a–c.
16 A. Mazzanti and D. Casarini, Wiley Interdiscip. Rev.: Comput. Mol.
Sci., 2012, 2, 613.
We acknowledge financial support from the University of
Bologna (RFO program).
17 G. W. Kabalka and R. S. Varma, in Comprehensive Organic Synthesis,
ed. B. M. Trost, Pergamon, Oxford, 1991, ch. 2.1, vol. 8, pp. 363–379.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun.