916 Bull. Chem. Soc. Jpn., 78, No. 5 (2005)
Glycosylation via Glycosyl Phosphonium Halide
11:9 Hz, 1H), 4.44–4.51 (m, 1H), 4.48 (d, J ¼ 4:0 Hz, 1H, H-1),
4.50 (d, J ¼ 4:6 Hz, 1H), 4.57, (d, J ¼ 11:6 Hz, 1H), 4.58 (d, J ¼
11:9 Hz, 1H), 4.64, (d, J ¼ 11:9 Hz, 1H), 4.68–4.76 (m, 4H), 4.90,
(d, J ¼ 11:6 Hz, 1H), 4.94 (d, J ¼ 11:2 Hz, 1H), 5.59 (d, J ¼ 3:7
Hz, 1H, H-10), 6.98–7.01 (m, 2H), 7.11–7.33 (m, 33H); 13C NMR
(68 MHz, CDCl3) ꢂ 54.92, 68.50, 68.85, 69.02, 69.49, 72.61,
73.11, 73.34, 73.49, 73.70, 73.79, 74.85, 75.20, 76.03, 76.29,
78.57, 79.12, 79.29, 97.76 (C-1), 97.85 (C-10), 127.14, 127.26,
127.33, 127.44, 127.48, 127.66, 127.89, 127.91, 128.07, 128.12,
128.17, 128.22, 128.24, 128.26, 128.33, 128.36, 128.39, 137.92,
138.29, 138.34, 138.38, 138.43, 138.72, 138.82; HRMS m=z calcd
for C62H70NO11 [M þ NH4]þ 1004.4943, found 1004.4948.
etc. (2000), Part 1. h) K. J. Jensen, J. Chem. Soc., Perkin Trans.
1, 2002, 2219. i) A. V. Demchenko, Synlett, 2003, 1225.
2
T. K. Lindhorst, ‘‘Essentials of Carbohydrate Chemistry
and Biochemistry,’’ WILEY-VCH (2003).
R. U. Lemieux, K. B. Hendriks, R. V. Stick, and K. James,
J. Am. Chem. Soc., 97, 4056 (1975).
a) S. N. Lam and J. Gervay, Carbohydr. Res., 337, 1953
3
4
(2002). b) A. K. Sarkar, A. K. Ray, and N. Roy, Carbohydr.
Res., 190, 181 (1989). c) A. Chernyak, S. Oscarson, and D. Turek,
Carbohydr. Res., 329, 309 (2000).
5
a) J. W. Gillard and M. Israel, Tetrahedron Lett., 22, 513
(1981). b) T. Ishikawa and H. G. Fletcher, Jr., J. Org. Chem.,
34, 536 (1969).
Methyl
2,3,6-Tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-D-
galactopyranosyl)-ꢀ-D-glucopyranoside (17): The ꢀ=ꢁ ratio
was determined by HPLC analysis13 (DAICEL Chiralcel OD-H,
ꢃ4:6 ꢃ 250 mm2; n-hexane/2-propanol = 10/1; 1.0 mL/min;
254 nm; ꢀ-isomer, 13.4 min; ꢁ-isomer, 25.5 min).
6
7
M. Hadd and J. Gervay, Carbohydr. Res., 320, 61 (1999).
T. Mukaiyama, Y. Kobashi, and T. Shintou, Chem. Lett.,
32, 900 (2003).
8
Molecular sieves 5A improved the yields of glycosylations
Mechanistic Study of the Glycosylation with Glycosyl Ace-
tate Promoted by Ph3P=O–TMSI Adduct: To a stirred sus-
pension of MS 5A (240 mg), Ph3P=O (0.67 g, 0.24 mmol), and
iodotrimethylsilane (17.1 mL, 0.12 mmol) in CH2Cl2 (1.2 mL)
was added 13 (0.070 g, 0.12 mmol) at 0 ꢂC. After stirring for
30 min, 2 (0.037 g, 0.08 mmol) was added and the resulting mix-
ture was stirred for 7 h at room temperature, diluted with EtOAc,
filtered through Celite and evaporated. The resulting residue was
purified by preparative TLC (silica gel) to give 3 (0.042 g,
0.043 mmol, 54%, ꢀ=ꢁ ¼ 94:9=5:1).
using glycosyl phosphinite and iodomethane: see Ref. 7. Recent
examples of glycosylation using molecular sieves: a) G. H. Posner
and D. S. Bull, Tetrahedron Lett., 37, 6279 (1996). b) K. Toshima,
K. Kasumi, and S. Matsumura, Synlett, 1998, 643. c) H. Jona, K.
Takeuchi, and T. Mukaiyama, Chem. Lett., 2000, 1278. d) K.
Toshima, H. Nagai, K. Kasumi, K. Kawahara, and S. Matsumura,
Tetrahedron, 60, 5331 (2004).
9
It is known to be a polar aprotic solvent with high electron-
donating power: Y. Ozari and J. Jagur-Grodzinski, J. Chem. Soc.,
Chem. Commun., 1974, 295.
10 Reviews on glycosyl fluoride: a) M. Shimizu, H. Togo, and
M. Yokoyama, Synthesis, 1998, 799. b) M. Yokoyama, Carbo-
hydr. Res., 327, 5 (2000). c) K. Toshima, Carbohydr. Res., 327,
15 (2000). d) T. Mukaiyama and H. Jona, Proc. Jpn. Acad., Ser.
B, 78, 73 (2002).
11 The confirmation of Ph3P=O–TMSI adduct was supposed
based on the measurement of its 31P NMR in CD2Cl2 (ꢂ 41.9 ppm,
cf. 31P shift of Ph3P=O was ꢂ 29.0 ppm).
This study was supported in part by a Grant of the 21st Cen-
tury COE Program from the Ministry of Education, Culture,
Sports, Science, and Technology (MEXT). We thank Mr. Akira
Higuchi, Taisho Pharmaceutical Company Ltd., for his kind
help concerning High Resolution Mass Spectrometry analyses.
References
12 L. D. Quin, ‘‘A Guide to Organophosphorous Chemistry,’’
John Wiley and Sons (2000), p. 103.
1
Reviews on glycosylations: a) H. Paulsen, Angew. Chem.,
Int. Ed. Engl., 21, 155 (1982). b) R. R. Schmidt, Angew. Chem.,
Int. Ed. Engl., 25, 212 (1986). c) H. Kuntz, Angew. Chem., Int.
13 H. Jona, H. Mandai, W. Chavasiri, K. Takeuchi, and T.
Mukaiyama, Bull. Chem. Soc. Jpn., 75, 291 (2002).
14 H. Chiba, S. Funasaka, and T. Mukaiyama, Bull. Chem.
Soc. Jpn., 76, 1629 (2003).
15 Analytical date of 16ꢀ has been reported from our group:
T. Mukaiyama, K. Takeuchi, H. Jona, H. Maeshima, and T.
Saitoh, Helv. Chim. Acta, 83, 1901 (2000).
Ed. Engl., 26, 294 (1987). d) P. Sinay, Pure Appl. Chem., 63,
¨
519 (1991). e) K. Suzuki and T. Nagasawa, J. Synth. Org. Chem.,
Jpn., 50, 378 (1992). f) K. Toshima and K. Tatsuta, Chem. Rev.,
93, 1503 (1993). g) B. Ernst, G. W. Hart, and P. Sinay, ‘‘Carbo-
¨
hydrate in Chemistry and Biology,’’ WILEY-VCH, Weinheim