We then wanted to determine the enantiomeric purity of the
C15 vitamin E side-chain 1. Mosher ester analysis of γ-chiral
alcohol 1 proved to be ineffective for determining the optical
purity of 1. We recently demonstrated that 2-methoxy-2-(1-
naphthyl)propionic acid (MαNP acid)26 ester analysis is a widely
applicable and powerful method for chiral discrimination of
various β- and more-remotely chiral primary alcohols including
those of isotopomers.20,21 As expected, two diastereomeric MαNP
esters 12a and 12b derived from γ-chiral alcohol 1 showed
significantly different chemical shifts. In particular, the γ-methyl
groups of these two diastereomers 12 showed completely
References
1. (a) Mercier, C.; Chabardes, P. Pure Appl. Chem. 1994, 66, 1509; (b)
Dowd, P.; Hershline, R.; Ham. S. W.; Naganathan, S. Nat. Prod. Rep.
1994, 11, 251.
2. (a) Nakamura, Y.; Mori, K. Eur. J. Org. Chem. 1999, 2175; (b) Aldrich,
J. R.; Oliver, J. E.; Lusby, W. R.; Kochansky J. P.; Borges, M. J. J.
Chem. Ecol. 1994, 20, 1103.
3. Bennett, C. J.; Caldwell, S. T.; McPhail, D. B.; Morrice, P. C.; Duthie,
G. G.; Hartley, R. C. Bioorg. Med. Chem. 2004, 12, 2079.
4. (a) Minale, L. In Marine Natural Products: Chemical and Biological
Perspectives; Scheuer, P. J., Ed.; Academic Press, 1978, Vol. 1, pp
175–240; (b) Sankaranarayanan, S.; Sharma A.; Chattopadhyay, S.
Tetrahedron: Asymmetry 2002, 13, 1373.
1
separate H NMR signals (Figure 3), which indicated that the
5. Zhang, D.; Poulter, C. D. J. Am. Chem. Soc. 1993, 115, 1270.
6. (a) Heathcock, C. H.; Finkelstein, B. L.; Aoki, T.; Poulter, C. D. Science
1985, 229, 862; (b) Zillig, W. Curr. Opin. Genet. Dev. 1991, 1, 544.
7. (a) Cohen, N.; Schaer, B. J. Org. Chem. 1992, 57, 5783; (b) Hübscher,
J.; Barner, R. Helv. Chim. Acta 1990, 73, 1069; (c) Netscher, T. Chimia
1996, 50, 563.
enantiomeric excess of alcohol 1 is greater than 99%. In addition,
the diastereomeric purity of alcohol 1 was also confirmed to be
greater than 99% by 13C NMR analysis.
8. (a) Fujisawa, T.; Sato, T.; Kawara T.; Ohashi, K. Tetrahedron Lett.
1981, 22, 4823; (b) Schmid, R.; Antoulas, S.; Rüttimann, A.; Schmid,
M.; Vecchi, M.; Weiser, H. Helv. Chim. Acta 1990, 73, 1276.
9. (a) Lee, H.; Lee, Y.; Kim, D.; Son, M.; Nam, T.; Jeong, B. Tetrahedron
Lett. 2014, 55, 5895; (b) Chapelat, J.; Hengartner, U.; Chougnet, A.;
Liu, K.; Huebbe, P.; Rimbach, G.; Woggon, W.-D. ChemBioChem.
2011, 12, 118.
10. Threlfall, D. R. In Secondary Plant Products; Bell, E. A.; Charlwood,
B. V., Eds.; Springer, Berlin, 1980, pp 292–298.
11. Rowland, S. J.; Robson, J. N. Mar. Environ. Res. 1990, 30, 191.
12. Mancuso, C. A.; Odham, G.; Westerdahl, G.; Reeve, J. N.; White, D.
C.; J. Lipid Res. 1985, 26, 1120.
13. (a) Chan, K.; Cohen N.; De Noble, J. P.; Specian, A. C. Jr.; Saucy, G. J.
Org. Chem. 1976, 41, 3497; (b) Koreeda, M.; Brown, L. J. Org. Chem.
1983, 48, 2122; (c) Fujiwara, J.; Fukutani, Y.; Hasegawa, M.; Maruoka,
K.; Yamamoto, H. J. Am. Chem. Soc. 1984, 106, 5004; (d) Berkowitz,
W. F.; Wu, Y. Tetrahedron Lett. 1997, 38, 8141.
14. (a) Scott, J. W.; Bizzarro, F. T.; Parrish, D. R.; Saucy, G. Helv. Chim.
Acta 1976, 59, 290; (b) Takabe, K.; Sawada; Satani, T.; Yamada, T.;
Katagiri, T.; Yoda, H. Bioorg. Med. Chem. Lett. 1993, 13, 157; (c)
Chen, Y. C.; Nagumo, S.; Akita, H. Chem. Pharm. Bull. 1996, 44, 2153;
(d) Fleming, I.; Maiti, P.; Ramarao, C. Org. Biomol. Chem. 2003, 1,
3989.
1
Figure 3. H NMR spectra of diastereomeric MαNP esters of γ-
chiral alcohol 1 (CDCl3, 600MHz).
15. (a) Leuenberger, H. G. W.; Boguth, W.; Barner, R.; Schmid, M.; Zell,
R. Helv. Chim. Acta 1979, 62, 455; (b) Schmid, M.; Barner, R. Helv.
Chim. Acta 1979, 62, 464; (c) Zell, R. Helv. Chim. Acta 1979, 62, 474;
(d) Fuganti, C.; Grasselli, P. J. Chem .Soc. Chem. Commun. 1979, 995;
(e) Nozawa, M.; Takahashi, K.; Kato, K.; Akita, H. Chem. Pharm. Bull.
2000, 48, 272.
16. Takaya, H.; Ohta, T.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.;
Inoue, S.; Kasahara, I.; Noyori, R. J. Am. Chem. Soc. 1987, 109, 1597.
17. Wang, A.; Wüstenberg, B.; Pfaltz, A. Angew. Chem. Int. Ed. 2008, 47,
2298.
18. (a) Huo, S.; Shi, J.; Negishi, E. Angew. Chem. Int. Ed. 2002, 41, 2141;
For the discovery of the ZACA reaction, see: (b) Kondakov, D.;
Negishi, E. J. Am. Chem. Soc. 1995, 117, 10771; (c) Kondakov, D. Y.;
Negishi, E. J. Am Chem. Soc.1996, 118, 1577; For the recent reviews of
the ZACA reaction, see: (d) Negishi, E. Arkivoc 2011, viii, 34; (e)
Negishi, E. Angew. Chem. Int. Ed. 2011, 50, 6738; (f) Xu, S.; Negishi,
E. Heterocycles 2014, 88, 845.
19. Xu, S.; Lee, C. T.; Wang, G.; Negishi, E. Chem. Asian J. 2013, 8, 1829.
20. Xu, S.; Oda, A.; Kamada, H.; Negishi, E. Proc. Natl. Acad. Sci. USA,
2014, 111, 8368.
In summary, we have developed a highly enantioselective
(>99% ee) and diastereoselective (>98% de) route to chiral C15
vitamin E side-chain 1 via ZACA–Cu-catalyzed cross-coupling
from 3-buten-1-ol. The key α,ω-dioxyfunctional C5 synthon 6
(≥99% ee) was readily prepared by ZACA–LICA protocol, which
can be further functionalized at both ends. Two sequential Cu-
catalyzed alkyl–alkyl cross-coupling reactions of the
enantiomerically pure C5 iodide 4 were employed as the key
steps for preparing the C15 vitamin E side-chain 1. In addition, we
demonstrated that 1H NMR analysis of MαNP ester is a
convenient method for measuring the optical purity of the C15
vitamin E side-chain 1. It should be noted that various (R)- and
(S)-α,ω-difunctional compounds have been successfully prepared
as enantiomerically pure (≥99% ee) substances by ZACA–LICA
protocol.19-21 This novel approach promises to provide a reliable
method for highly enantioselective and diastereoselective
syntheses of various possible stereoisomers of chiral isoprenoid
natural products and analogues. Further studies along this line are
currently ongoing in our laboratories.
21. Xu, S.; Oda, A.; Negishi, E. Chem. Eur. J. 2014, 20, 16060.
22. Chen, C. S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc.
1982, 104, 7294.
23. Terao, J.; Todo, H.; Begum, S. A.; Kuniyasu, H.; Kambe, N. Angew.
Chem. Int. Ed. 2007, 46, 2086.
24. (a) Erker, G.; Aulbach, M.; Knickmeier, M.; Wingbermühle, D.;
Kürger, C.; Nolte, M.; Werner, S. J. Am. Chem. Soc. 1993, 115, 4590;
(b) (+)–(NMI)2ZrCl2 (CAS number: 641627-68-1) and (–)–(NMI)2ZrCl2
(CAS number: 148347-88-0) are available from Sigma-Aldrich and
Wako Pure Chemicals.
Acknowledgments
25. (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512; (b)
Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat. Protoc. 2007, 2, 2451.
26. (a) Harada, N.; Watanabe, M.; Kuwahara, S.; Sugio, A.; Kasai, Y.;
Ichikawa, A. Tetrahedron: Asymmetry 2000, 11, 1249; (b) Kasai, Y.;
Sugio, A.; Sekiguchi, S.; Kuwahara, S.; Matsumoto, T.; Watanabe, M.;
Ichikawa, A.; Harada, N. Eur. J. Org. Chem. 2007, 1811.
We thank the Negishi-Brown Institute, Purdue University and
Teijin Limited for support of this research. We also thank Sigma-
Aldrich, Albemarle, and Boulder Scientific for their support.