2074
A. Yanagisawa et al.
LETTER
(4) (a) Nokami, J.; Yoshizane, K.; Matsuura, H.; Sumida, S. J.
Am. Chem. Soc. 1998, 120, 6609. (b) Sumida, S.; Ohga, M.;
Mitani, J.; Nokami, J. J. Am. Chem. Soc. 2000, 122, 1310.
(c) Nokami, J.; Anthony, L.; Sumida, S. Chem. Eur. J. 2000,
6, 2909. (d) Nokami, J. J. Synth. Org. Chem., Jpn. 2003, 61,
992.
(5) (a) Nokami, J.; Ohga, M.; Nakamoto, H.; Matsubara, T.;
Hussain, I.; Kataoka, K. J. Am. Chem. Soc. 2001, 123, 9168.
(b) Nokami, J.; Nomiyama, K.; Matsuda, S.; Imai, N.;
Kataoka, K. Angew. Chem. Int. Ed. 2003, 42, 1273.
(c) Nokami, J.; Nomiyama, K.; Shafi, S. M.; Kataoka, K.
Org. Lett. 2004, 6, 1261. (d) Shafi, S. M.; Chou, J.; Kataoka,
K.; Nokami, J. Org. Lett. 2005, 7, 2957. (e) Hussain, I.;
Komasaka, T.; Ohga, M.; Nokami, J. Synlett 2002, 640.
(f) Kataoka, K.; Ode, Y.; Matsumoto, M.; Nokami, J.
Tetrahedron 2006, 62, 2471.
(7) (a) Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org.
Lett. 2005, 7, 3577. For other notable examples of allyl-
transfer reaction to aldehydes via retro-allylation, see:.
(b) Tagliavini, G.; Peruzzo, V.; Marton, D. Inorg. Chim.
Acta 1978, 26, L41. (c) Peruzzo, V.; Tagliavini, G. J.
Organomet. Chem. 1978, 162, 37. (d) Jones, P.; Millot, N.;
Knochel, P. Chem. Commun. 1998, 2405. (e) Jones, P.;
Knochel, P. Chem. Commun. 1998, 2407. (f) Millot, N.;
Knochel, P. Tetrahedron Lett. 1999, 40, 7779. (g) Jones, P.;
Knochel, P. J. Org. Chem. 1999, 64, 186. (h) Fujita, K.;
Yorimitsu, H.; Shinokubo, H.; Oshima, K. J. Org. Chem.
2004, 69, 3302. (i) Hayashi, S.; Hirano, K.; Yorimitsu, H.;
Oshima, K. J. Am. Chem. Soc. 2006, 128, 2210.
(8) (a) Yanagisawa, A.; Sekiguchi, T. Tetrahedron Lett. 2003,
44, 7163. (b) Yanagisawa, A.; Goudu, R.; Arai, T. Org. Lett.
2004, 6, 4281.
(6) For other notable examples of allyl-transfer reactions to
aldehydes via [3,3]-sigmatropic rearrangement, see:
(a) Loh, T.-P.; Hu, Q.-Y.; Ma, L.-T. J. Am. Chem. Soc. 2001,
123, 2450. (b) Loh, T.-P.; Tan, K.-T.; Hu, Q.-Y. Angew.
Chem. Int. Ed. 2001, 40, 2921. (c) Loh, T.-P.; Tan, K.-T.;
Hu, Q.-Y. Tetrahedron Lett. 2001, 42, 8705. (d) Loh, T.-P.;
Hu, Q.-Y.; Chok, Y.-K.; Tan, K.-T. Tetrahedron Lett. 2001,
42, 9277. (e) Crosby, S. R.; Harding, J. R.; King, C. D.;
Parker, G. D.; Willis, C. L. Org. Lett. 2002, 4, 577. (f) Loh,
T.-P.; Hu, Q.-Y.; Ma, L.-T. Org. Lett. 2002, 4, 2389.
(g) Loh, T.-P.; Lee, C.-L. K.; Tan, K.-T. Org. Lett. 2002, 4,
2985. (h) Marumoto, S.; Jaber, J. J.; Vitale, J. P.;
(9) Typical experimental procedure for crotyl-transfer reaction
to aldehydes catalyzed by dibutyltin oxide (Table 2, Entry
4). Under an argon atmosphere, 4-methoxybenzaldehyde
(68.1 mg, 0.50 mmol) was added to a solution of dibutyltin
oxide (12.4 mg, 0.05 mmol) and crotyl donor (238 mg, 1.00
mmol) in dry toluene (2 mL) at r.t. After stirring for 30 min
the mixture was heated at reflux (oil bath temperature: 125–
130 °C) for 24 h and then treated with MeOH (2 mL), brine
(2 mL), and solid KF (ca. 2 g) at r.t. for 2 h. The resulting
precipitate was filtered off and the filtrate diluted with H2O
(30 mL) and extracted with Et2O (3 × 30 mL). The combined
organic extracts were washed with brine (20 mL), dried over
anhydrous Na2SO4, and concentrated in vacuo after
filtration. The residual crude product was purified by column
chromatography on silica gel to give a syn/anti mixture of
the corresponding homoallylic alcohol (96.0 mg, >99%
yield). The syn/anti ratio was determined to be 73:27 by 1H
NMR analysis. Spectral data of a 73:27 mixture of the syn
and anti isomers: TLC Rf = 0.17 (hexane–EtOAc, 7:1); 1H
NMR (400 MHz, CDCl3): d = 0.82 (d, J = 7.0 Hz, 0.81 H),
0.99 (d, J = 6.8 Hz, 2.19 H), 2.31 (br s, 1 H), 2.42 (m, 0.27
H), 2.51 (m, 0.73 H), 3.76 (s, 3 H), 4.26 (d, J = 8.0 Hz, 0.27
H), 4.46 (d, J = 5.8 Hz, 0.73 H), 4.97–5.01 (m, 1.46 H),
5.12–5.18 (m, 0.54 H), 5.64–5.74 (m, 0.73 H), 5.74–5.85 (m,
0.27 H), 6.83 (d, J = 8.7 Hz, 1.46 H), 6.85 (d, J = 8.5 Hz,
0.54 H), 7.17 (d, J = 8.7 Hz, 1.46 H), 7.21 (d, J = 8.5 Hz,
0.54 H); 13C NMR (100 MHz, CDCl3): d = 14.4, 16.4, 44.5,
46.1, 55.0, 55.0, 76.9, 77.3, 113.2, 113.4, 115.1, 116.3,
127.6, 127.8, 134.5, 134.7, 140.2, 140.8, 158.6, 158.9.
Spectral data (1H and 13C NMR) of the mixture of the syn and
anti isomers indicated good agreement with reported data.10
(10) Batey, R. A.; Thadani, A. N.; Smil, D. V.; Lough, A. J.
Synthesis 2000, 990.
Rychnovsky, S. D. Org. Lett. 2002, 4, 3919. (i) Tan, K.-T.;
Chng, S.-S.; Cheng, H.-S.; Loh, T.-P. J. Am. Chem. Soc.
2003, 125, 2958. (j) Cheng, H.-S.; Loh, T.-P. J. Am. Chem.
Soc. 2003, 125, 4990. (k) Lee, C.-L. K.; Lee, C.-H. A.; Tan,
K.-T.; Loh, T.-P. Org. Lett. 2004, 6, 1282. (l)Lee,C.-H. A.;
Loh, T.-P. Tetrahedron Lett. 2004, 45, 5819.
(m) Ramachandran, P. V.; Pratihar, D.; Biswas, D. Chem.
Commun. 2005, 1988. (n) Lee, C.-H. A.; Loh, T.-P.
Tetrahedron Lett. 2006, 47, 809. (o) Lee, C.-H. A.; Loh, T.-
P. Tetrahedron Lett. 2006, 47, 1641. (p) Loh, T.-P.; Chua,
G.-L. J. Synth. Org. Chem., Jpn. 2005, 63, 1137.
Synlett 2006, No. 13, 2071–2074 © Thieme Stuttgart · New York