LETTER
Iridium-Catalyzed Oxidative Dimerization of Primary Alcohols to Esters
1455
O
OH
O
R
OH
1
R
OH
R
H
R
O
R
R
O
R
1
5
6
2
Ir
Ir
Ir
Ir
H
H
N
O
H
H
O
N
O
H
H
O
N
N
Ph
Ph
Ph
Ph
Ph
Ph
H
4
H
4
Ph
Ph
3
3
OH
O
OH
O
Scheme 2
(
2) For recent examples of Tishchenko and related reactions,
see: (a) Ooi, T.; Ohmatsu, K.; Sasaki, K.; Miura, T.;
Maruoka, K. Tetrahedron Lett. 2003, 44, 3191.
(18) Recent examples of hydrogen transfer reaction using Cp*Ir
complexes, see: (a) Mashima, K.; Abe, T.; Tani, K. Chem.
Lett. 1998, 1199. (b) Murata, K.; Ikariya, T.; Noyori, R. J.
Org. Chem. 1999, 64, 2186. (c) Ogo, S.; Makihara, N.;
Watanabe, Y. Organometallics 1999, 18, 5470. (d) Ogo, S.;
Makihara, N.; Kaneko, Y.; Watanabe, Y. Organometallics
2001, 20, 4903. (e) Fujita, K.; Furukawa, S.; Yamaguchi, R.
J. Organomet. Chem. 2002, 649, 289. (f) Fujita, K.;
(b) Gnanadesikan, V.; Horiuchi, Y.; Ohshima, T.; Shibasaki,
M. J. Am. Chem. Soc. 2004, 126, 7782. (c) For a recent
review: Törmäkangas, O. P.; Koskinen, A. M. P. Recent Res.
Dev. Org. Chem. 2001, 5, 225.
(
(
(
(
(
3) Robertson, G. R. Org. Synth., Coll. Vol. I; Wiley and Sons:
New York, 1941, 138.
4) Al Neirabeyeh, M.; Ziegler, J. C.; Gross, B.; Caubère, P.
Synthesis 1976, 811.
Yamamoto, K.; Yamaguchi, R. Org. Lett. 2002, 4, 2691.
(g) Abura, T.; Ogo, S.; Watanabe, Y.; Fukuzumi, S. J. Am.
Chem. Soc. 2003, 125, 4149. (h) Fujita, K.; Li, Z.; Ozeki,
N.; Yamaguchi, R. Tetrahedron Lett. 2003, 44, 2687.
(i) Fujita, K.; Kitatsuji, C.; Furukawa, S.; Yamaguchi, R.
Tetrahedron Lett. 2004, 45, 3215. (j) Fujita, K.; Fujii, T.;
Yamaguchi, R. Org. Lett. 2004, 6, 3525. (k) Hanasaka, F.;
Fujita, K.; Yamaguchi, R. Organometallics 2004, 23, 1490.
(19) Related oxidative lactonization of diols in the presence of
acetone was reported by Murahashi et al., see ref. 13a.
(20) The use of other bases, such as Na CO , Cs CO , KHCO ,
5) Nwaukwa, S. O.; Keehn, P. M. Tetrahedron Lett. 1982, 23,
35.
6) Kageyama, T.; Kawahara, S.; Kitamura, K.; Ueno, Y.;
Okawara, M. Chem. Lett. 1983, 1097.
7) Takase, K.; Masuda, H.; Kai, O.; Nishiyama, Y.; Sakaguchi,
S.; Ishii, Y. Chem. Lett. 1995, 871.
(
(
8) Bhar, S.; Chaudhuri, S. K. Tetrahedron 2003, 59, 3493.
9) Merbouh, N.; Bobbitt, J. M.; Brückner, C. J. Org. Chem.
2
3
2
3
3
2
004, 69, 5116.
and KOAc resulted in lower reactivity. Although the role of
the K CO is not clear at present, it might increase the
(
(
(
10) Tohma, H.; Maegawa, T.; Kita, Y. Synlett 2003, 723.
11) Nagashima, H.; Tsuji, J. Chem. Lett. 1981, 1171.
12) Blum, Y.; Reshef, D.; Shvo, Y. Tetrahedron Lett. 1981, 22,
2
3
nucleophilicity of 1 to the corresponding aldehyde for the
formation of hemiacetal. For the mechanistic study of acid-
and base-catalyzed formation of the hemiacetal, see:
Sorensen, P. E.; Jencks, W. P. J. Am. Chem. Soc. 1987, 109,
4675.
1541.
(
13) (a) Murahashi, S.-I.; Ito, K.; Naota, T.; Maeda, Y.
Tetrahedron Lett. 1981, 22, 5327. (b) Murahashi, S.-I.;
Naota, T.; Ito, K.; Maeda, Y.; Taki, H. J. Org. Chem. 1987,
(21) General Procedure for the Oxidative Dimerization of 1.
A 10 mL test tube equipped with a magnetic stirring bar was
charged with 42 mg (0.3 mmol) of K CO and 1.0 mmol of
52, 4319.
(
(
(
(
14) Tamaru, Y.; Yamada, Y.; Inoue, K.; Yamamoto, Y.;
2
3
Yoshida, Z. J. Org. Chem. 1983, 48, 1286.
15) Masuyama, Y.; Takahashi, M.; Kurusu, Y. Tetrahedron Lett.
alcohol under Ar. Then a solution of 11 mg (0.02 mmol, 2
mol%) of Ir complex 3 in butanone (0.24 mL, 2.7 mmol) was
added to the above mixture and stirred at r.t. The mixture
was passed through a short silica gel column (12 g, EtOAc)
to remove the catalyst. The yields for the products of 2c and
2d were determined by gas chromatography using authentic
samples and appropriate correction factors. The products of
2a, 2b, and 2d–m were purified by silica gel column
chromatography (hexane–EtOAc).
1
984, 25, 4417.
16) Wang, L.; Eguchi, K.; Arai, H.; Seiyama, T. Chem. Lett.
986, 1173.
17) (a) Suzuki, T.; Morita, K.; Tsuchida, M.; Hiroi, K. Org. Lett.
002, 4, 2361. (b) Suzuki, T.; Morita, K.; Matsuo, Y.; Hiroi,
1
2
K. Tetrahedron Lett. 2003, 44, 2003. (c) Suzuki, T.; Morita,
K.; Tsuchida, M.; Hiroi, K. J. Org. Chem. 2003, 68, 1601.
(
22) Although TONs were not optimized at the moment, they
were roughly calculated to be in range between 17 and 23 for
most substrates [with single entry as high as 40 (entry 7)].
23) The mechanism of saturation is not clear at present. Partially
saturated products were observed even without K CO under
(
2
3
a high-concentration condition (4.2 M). However, such
saturated products were not observed with K CO under a
2
3
diluted condition (0.08 M). See also ref. 17c.
Synlett 2005, No. 9, 1453–1455 © Thieme Stuttgart · New York