Fig. 4 inset) and thus the more hydrogen produced drives the
reaction towards the two step decarbonylation and subsequent
hydrogenation to THF. Longer times of irradiation obviously
favoured the second hydrogenation step also leading to high
selectivities to THF (Fig. 5).
13 B. Sunkara, J. Zhan, K. Jingjing, W. Igor, H. Yingqing, H. Jibao,
E. Jennifer, G. L. McPherson and T. V. John, Langmuir, 2011, 27, 7854–
7859.
1
4 (a) B. Wu, Y. Kuang, X. Zhang and J. Chen, Nano Today, 2011, 6, 75–
90; (b) L. F. Mabena, S. Sinha Ray, S. D. Mhlanga and N. J. Coville,
Appl. Nanosci., 2011, 1, 67–77.
15 (a) T. Matsumoto, M. Ueno, N. Wang and S. Kobayashi, Chem.–Asian J.,
Thus, this approach offers a simple and straightforward
pathway to THF from furfural in comparison with other reported
alternatives from related biomass-derived platform molecules
2
2
008, 3, 196–214; (b) J. Han, Y. Liu and R. Guo, Adv. Funct. Mater.,
009, 19, 1112–1117; (c) A. Villa, D. Wang, N. Dimitratos, D. Su,
V. Trevisan and L. Prati, Catal. Today, 2010, 150, 8–15; (d) B. Feng,
Z. Hou, H. Yang, X. Wang, Y. Hu, H. Li, Y. Qiao, X. Zhao and
Q. Huang, Langmuir, 2010, 26, 2505–2513; (e) A. M. Balu, A. Pineda,
K. Yoshida, J. M. Campelo, P. L. Gai, R. Luque and A. A. Romero,
Chem. Commun., 2010, 46, 7825–7827; (f) M. Tristany, K. Philippot,
Y. Guari, V. Collière, P. Lecante and B. Chaudret, J. Mater. Chem., 2010,
32
(
e.g. succinic acid), featuring the in situ generation of hydro-
gen in the systems by using a renewable-derived solvent together
with mild reaction conditions and short reaction times.
Finally, our protocol may also pave the way for the utilisation
of designer redox-bifunctional nanoparticle catalytic systems for
oxidation and hydrogenation of related platform molecules (e.g.
γ-valerolactone). Further investigations in our group are ongoing
to translate the optimised batch microwave chemistry into more
scalable continuous flow processes by mimicking the moderate
to high temperatures and pressures achieved in a sealed micro-
20, 9523–9530; (g) A. Chen, Z. M. Cui, F. Niu, L. Jiang and W.
G. Dong, Chem. Commun., 2010, 46, 6524–6526; (h) C. Hao and
X. Zhao, Adv. Mater. Res., 2010, 113–114; (i) J. Okal, M. Zawadzki and
W. Tylus, Appl. Catal., B, 2011, 101, 548–557; ( j) V. B. Komvakis,
M. Marti, A. Delimitis, I. A. Vasalos and K. S. Triantafyllidis, Appl.
Catal., B, 2011, 103, 62–71; (k) C. M. Cirtiu, A. F. Dunlop-Brière and
A. Moores, Green Chem., 2011, 13, 288–291.
16 (a) G. G. Wildgoose, C. E. Banks and R. G. Compton, Small, 2006, 2,
182–193; (b) B. Li, P. He, G. Yi, H. Lin and Y. Yuan, Catal. Lett., 2009,
TM
33
wave vessel using the X-Cube flow reactor.
133, 33–40; (c) N. Dimitratos, J. A. Lopez-Sanchez and G. J. Hutchings,
Chem. Sci., 2012, 3, 20–44; (d) J. M. Campelo, T. D. Conesa, M.
J. Gracia, M. J. Jurado, R. Luque, J. M. Marinas and A. A. Romero,
Green Chem., 2008, 10, 853–858.
Acknowledgements
R.L. gratefully acknowledges support from the Spanish MICINN
via the concession of a RyC contract (ref. RYC-2009-04199)
and funding under projects P10-FQM-6711 (Consejeria de
Ciencia e Innovacion, Junta de Andalucia) and CTQ2011
17 M. Yu, Y. Wang, W. Sun and X. Yao, Adv. Synth. Catal., 2012, 354, 71–76.
1
8 (a) D. Astruc, F. Lu and J. R. Aranzaes, Angew. Chem., Int. Ed., 2005,
4, 7852–7872; (b) M. Haruta, Chem. Rec., 2003, 3, 75–87;
c) M. Jahjah, Y. Kihn, E. Teuma and M. Gomez, J. Mol. Catal. A:
4
(
Chem., 2010, 332, 106–112; (d) E. V. Starodubtseva, M. G. Vinogradov,
O. V. Turova, N. A. Bumagin, E. G. Rakov and V. I. Sokolov, Catal.
Commun., 2009, 10, 1441–1442.
2
8954-C02-02 (MICINN). E.J. García-Suárez thanks MCIIN,
CSIC and FYCIT for José Castillejo, JAE DOC and Clarin post-
doctoral grants, respectively. CNRS is also acknowledged for
financial support.
19 (a) Z. Yang, S. Guo, X. Pan, J. Wang and X. Bao, Energy Environ. Sci.,
2011, 4, 4500; (b) N. Neelakandeswari, G. Sangami, P. Emayavaramban,
S. Ganesh Babu, R. Karvembu and N. Dharmaraj, J. Mol. Catal. A:
Chem., 2012, in press.
20 M. S. Kwon, N. Kim, C. M. Park, J. S. Lee, K. Y. Kang and J. Park, Org.
Lett., 2005, 7, 1077–1079.
References
21 (a) H. Liu, Y. Li, R. Luque and H. Jiang, Adv. Synth. Catal., 2011, 353,
3
107–3113; (b) R. A. Arancon, H. R. Barros, A. M. Balu, C. Vargas and
1
(a) R. J. White, R. Luque, V. L. Budarin, J. H. Clark and D.
J. Macquarrie, Chem. Soc. Rev., 2009, 38, 481–494; (b) J. M. Campelo,
D. Luna, R. Luque, J. M. Marinas and A. A. Romero, ChemSusChem,
R. Luque, Green Chem., 2011, 13, 3162–3167; (c) A. M. Balu,
B. Baruwati, E. Serrano, J. Cot, J. Garcia–Martinez, R. S. Varma and
R. Luque, Green Chem., 2011, 13, 2750–2758.
2 E. J. Garcia-Suarez, M. Tristany, A. B. Garcia, V. Collière and
K. Philippot, Microporous Mesoporous Mater., 2012, 153, 155–162.
3 M. J. Climent, A. Corma and S. Iborra, Chem. Rev., 2011, 111, 1072–
2
009, 2, 18–45.
2
2
2
2
2
2
2
(a) G. Salas, C. C. Santini, K. Philippot, V. Collière, B. Chaudret,
B. Fenet and P. F. Fazzini, Dalton Trans., 2011, 40, 4660–4668;
(b) G. Salas, A. Podgorsek, P. S. Campbell, C. C. Santini,
1
133.
4 J. C. Serrano, R. Luque and A. Sepulveda-Escribano, Chem. Soc. Rev.,
011, 40, 5266–5281.
A. A. H. Padua, M. F. Costa Gomes, K. Philippot, B. Chaudret and
M. Turmine, Phys. Chem. Chem. Phys., 2011, 13, 13527–13536; (c) J.
L. Pellegatta, C. Blandy, V. Collière, R. Choukroun, B. Chaudret,
P. Cheng and K. Philippot, J. Mol. Catal. A: Chem., 2002, 178, 55–61;
2
5 S. R. Tennison, O. P. Kozynchenko, V. V. Strelko and A. J. Blackburn,
Porous carbons, US pat., 0032092, 2008.
(
d) C. Pan, K. Pelzer, K. Philippot, B. Chaudret, F. Dassenoy, P. Lecante
and M. J. Casanove, J. Am. Chem. Soc., 2001, 123, 7584–7593;
e) J. Dupont and J. D. Scholten, Chem. Soc. Rev., 2010, 39, 1780–1804.
6 E. Ramirez, S. Jansat, K. Philippot, P. Lecante, M. Gómez, A. Masdeu
and B. Chaudret, J. Organomet. Chem., 2004, 689, 4601–4610.
7 (a) C. S. K. Lin, R. Luque, J. H. Clark and C. Du, Biofuels, Bioprod.
Biorefin., 2012, 6, 88–104; (b) R. Luque, J. H. Clark, K. Yoshida and P.
L. Gai, Chem. Commun., 2009, 5305–5307; (c) D. Pham Minh,
M. Besson, C. Pinel, P. Fuertes and C. Petitjean, Top. Catal., 2010, 53,
(
3
4
V. Polshettiwar and A. Molnar, Tetrahedron, 2007, 63, 6949.
S. S. Próckl, W. Kleist, M. A. Gruber and K. Köhler, Angew. Chem., Int.
Ed., 2004, 43, 1881.
5
C. P. Mehnert, D. W. Weaver and J. Y. Ying, J. Am. Chem. Soc., 1998,
1270–1273; (d) C. Delhomme, D. Weuster-Botz and F. E. Kuehn, Green
1
20, 12289–12296.
Chem., 2009, 11, 13–26; (e) J. C. Serrano-Ruiz and J. A. Dumesic, Green
Chem., 2009, 11, 1101–1104; (f) D. M. Alonso, J. Q. Bond, J.
C. Serrano-Ruiz and J. A. Dumesic, Green Chem., 2010, 12, 992–999.
8 K. J. Zeitsch, The Chemistry and Technology of Furfural and its Many
By-Products, Elsevier, Amsterdam, 1st edn, 2000, Sugar Series, vol. 13,
pp. 150–155.
6
7
Z. K. Esumi, R. Isono and T. Yoshimura, Langmuir, 2004, 20, 237–242.
S. V. Ley, C. Ramarao, R. S. Gordon, A. B. Holmes, A. J. Morrison, I.
F. McConvey, I. M. Shirley and S. C. Smith, Chem. Commun., 2002,
2
2
1134–1136.
8
9
E. Roduner, Nanoscopic Materials. Size-Dependent Phenomena, Royal
Society of Chemistry, Cambridge, 2006, pp. 239–262.
M. Lakshmi Kantam, K. B. S. Kumar, P. Srinivas and B. Sreedhar, Adv.
Synth. Catal., 2007, 349, 1141–1149.
9 V. Pace, P. Hoyos, M. Fernandez, J. V. Sinisterra and A. Alcantara, Green
Chem., 2010, 12, 1380–1382.
3
3
3
0 S. Sitthisa and D. E. Resasco, Catal. Lett., 2011, 141, 784–791.
1 R. D. Srivastava and A. K. Guha, J. Catal., 1985, 91, 254–262.
2 (a) R. Luque and J. H. Clark, Catal. Commun., 2010, 11, 928–931; (b) R.
M. Deshpande, V. V. Buwa, C. V. Rode, R. V. Chaudhari and P. L. Mills,
Catal. Commun., 2002, 3, 269–274.
1
0 P. Serp and J. L. Figueiredo, Carbon Materials for Catalysis, Wiley-
VCH, Weinheim, Germany, 2009.
11 K. C. Hwang, J. Phys. D: Appl. Phys., 2010, 43, 1–13.
1
2 (a) R. Singh, T. Premkumar, S. Thathan, G. Ji-Young and E. Kurt,
Chem.–Eur. J., 2010, 16, 1728–1743; (b) R. Baron, G. G. Wildgoose and
R. G. Compton, J. Nanosci. Nanotechnol., 2009, 9, 2274–2282.
3
3 http://www.thalesnano.com/products/x-cube
This journal is © The Royal Society of Chemistry 2012
Green Chem., 2012, 14, 1434–1439 | 1439