Communication
RSC Advances
ligand abstracts the proton. Then, the condensation of the
activated aldehyde with the amino group of anthranilamide
produces an imine intermediate with the H+ in solution. In the
meantime, the imine part could be activated by the cation as
shown in V. Thus, the nal product could be formed by intra-
molecular nucleophilic attack of the amide nitrogen on the
activated imine carbon, followed by a proton transfer. Once the
product is released, the catalytically active species II is regen-
erated by the coordination of CH3CH2OH and releases H+ for
the next cycle.
5 L. M. Wang, L. Hu, J. H. Shao, J. J. Yu and L. Zhang, J. Fluorine
Chem., 2008, 129, 1139.
6 M. Wang, T. T. Zhang, Y. Liang and J. J. Gao, Chin. Chem.
Lett., 2011, 22, 1423.
7 J. X. Chen, D. Z. Wu, F. He, M. C. Liu and H. Y. Wua,
Tetrahedron Lett., 2008, 49, 3814.
8 J. Safari and S. G. Ravandi, RSC Adv., 2014, 4, 11654.
9 M. Abdollahi-Alibeik and E. Shabani, Chin. Chem. Lett., 2011,
22, 1163.
10 H. R. Safaei, M. Shekouhy, S. Khademi, V. Rahmanian and
M. Safaei, J. Ind. Eng. Chem., 2014, 20, 3019.
11 (a) A. Gansauer, D. Franke, T. Lauterbach and M. Nieger, J.
Am. Chem. Soc., 2005, 127, 11622; (b) G. Erker, G. Kehr and
R. Froehlich, Coord. Chem. Rev., 2006, 250, 36; (c)
P. J. Chirik, Organometallics, 2010, 29, 1500; (d) T. Saito,
H. Nishiyama, H. Tanahashi, K. Kawakita, H. Tsurugi and
K. Mashima, J. Am. Chem. Soc., 2014, 136, 5161; (e)
D. F. Chen, Z. Y. Han, X. L. Zhou and L. Z. Gong, Acc.
Chem. Res., 2014, 47, 2365; (f) M. E. Sloan, A. Staubitz,
T. J. Clark, C. A. Russell, G. C. L. Jones and I. Manners, J.
Am. Chem. Soc., 2010, 132, 3831; (g) A. Zydor, V. G. Kessler
and S. D. Elliott, Phys. Chem. Chem. Phys., 2012, 14, 7954;
(h) A. M. Chapman and D. F. Wass, Dalton Trans., 2012, 41,
9067.
Conclusions
In summary, a robust Lewis acid catalytic system was developed
through the activation of inert Cp2TiCl2 by ethanol for the
efficient synthesis of quinazoline derivatives. As little as 1 mol%
of Cp2TiCl2 efficiently catalyzed the condensation reaction, with
17 examples giving 95–98% yields. The mechanistic studies
including 1H NMR and HRMS analyses suggested that the
coordination of CH3CH2OH to titanocene dichloride formed the
catalytically active species Cp2Ti(OCH2CH3)2, which led to
superior activity for the condensation reaction. These results
illuminated a new catalytic system, which allows for a more
concise, efficient and mild protocol for the synthesis of quina-
zoline derivatives. Furthermore, the moderate reaction condi-
tions, air-stable organometallic Lewis acid catalyst, and absence
of any cocatalyst or ligand make this an environmentally
friendly methodology amenable to scale-up.
12 A. Gansaeuer, I. Winkler, D. Worgull, D. Franke,
T. Lauterbach, A. Okkel and M. Nieger, Organometallics,
2008, 27, 5699.
13 R. Qiu, X. Xu, L. Peng, Y. Zhao, N. Li and S. Yin, Chem.–Eur.
J., 2012, 18, 6172.
¨
14 A. Gansauer, M. Behlendorf, A. Cangonul, C. Kube,
Acknowledgements
J. M. Cuerva, J. Friedrich and M. V. Gastel, Angew. Chem.,
Int. Ed., 2012, 51, 3266.
This work was supported by the 111 Project (B14041), grants
from the National Natural Science Foundation of China
(21271124, 21272186, 21371112), the Fundamental Funds
Research for the Central Universities (GK201501005,
GK201302015, GK201503029), the Project Supported by Natural
Science Basic Research Plan in Shaanxi Province of China
(Program No. 2015JQ2056), the Program for Changjiang
Scholars and Innovative Research Team in University
(IRT_14R33).
¨
15 A. Gansauer, S. Hildebrandt, A. Michelmann, T. Dahmen,
D. v. Laufenberg, C. Kube, G. D. Fianu and R. A. Flowers II,
Angew. Chem., Int. Ed., 2015, 54, 7003.
16 Y. Wu, C. Chen, G. Jia, X. Y. Zhu, H. M. Sun, G. F. Zhang,
W. Q. Zhang and Z. W. Gao, Chem.–Eur. J., 2014, 20, 1.
17 X. Y. Zhu, C. Chen, B. X. Yu, G. F. Zhang, W. Q. Zhang and
Z. W. Gao, Chem. Lett., 2014, 43, 1832.
18 Y. Wu, X. Wang, Y. L. Luo, J. Wang, Y. J. Jian, H. M. Sun, G. F
Zhang, W. Q. Zhang and Z. W Gao, RSC Adv., 2016, 6, 15298.
19 X. Wang, Z. H. Wang, G. F. Zhang, W. Q. Zhang, Y. Wu and
Z. W. Gao, Eur. J. Org. Chem., 2016, 3, 502.
Notes and references
1 (a) M. J. Hour, L. J. Huang, S. C. Kuo, Y. Xia, K. Bastow,
Y. Nakanishi, E. Hamel and K. H. Lee, J. Med. Chem., 2000,
43, 4479; (b) H. L. Birch, G. M. Buckley, N. Davies,
H. J. Dyke, E. J. Frost, P. J. Gilbert, D. R. Hannah,
A. F. Haughan, M. J. Madigan, T. Morgan, W. R. Pitt,
A. J. Ratcliffe, N. C. Ray, M. D. Richard, A. Sharpe,
A. J. Taylor, J. M. Whitworth and S. C. Williams, Bioorg.
Med. Chem. Lett., 2005, 15, 5335; (c) E. Cohen, B. Klarberg
and J. R. Vaughan, J. Am. Chem. Soc., 1959, 81, 5508.
2 Z. Karimi-Jaberi and L. Zarei, S. Afr. J. Chem., 2012, 65, 36.
3 B. L. Vilas, V. S. Pravin and S. S. Murlidhar, Tetrahedron Lett.,
2013, 54, 5778.
20 (a) J. H. Toney and T. J. Marks, J. Am. Chem. Soc., 1985, 107,
947; (b) R. Fandos, B. Gallego, A. Otero, A. Rodriguez,
M. J. Ruiz, P. Terreros and C. Pastor, Organometallics, 2007,
26, 2896.
´
21 (a) A. F. A. Peacock, A. Habtemariam, R. Fernandez,
V. Walland, F. P. A. Fabbiani, S. Parsons, R. E. Aird,
D. I. Jodrell and P. J. Sadler, J. Am. Chem. Soc., 2006, 128,
1739; (b) D. Schroder, Acc. Chem. Res., 2012, 45, 1521.
22 J. C. Huffman, K. G. Moloy, J. A. Marsella and K. G. Caulton,
J. Am. Chem. Soc., 1980, 80, 3009.
23 J. L. Li, Z. W. Gao, P. Sun, L. X. Gao and W. Tikkanen, Inorg.
Chim. Acta, 2011, 368, 231.
4 S. Nagarajan, T. M. Shaikh and E. Kandasamy, New J. Chem.,
2015, 39, 9693.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 66074–66077 | 66077