11072
A. Contini et al. / Tetrahedron 64 (2008) 11067–11073
[Mþ1] (100), 194 [Mþ1ꢀ46, NO2] (23). Anal. Calcd for C11H17N3O3:
(300 MHz)
d
2.09 (3H, s, CH3), 3.03 and 3.16 (2H, 2ꢂdd, J¼13.1, 7.1,
C, 55.22; H, 7.16; N, 17.56. Found: C, 55.18; H, 7.27; N, 17.42.
6.5 Hz, CH2C6H5), 3.77 and 4.54 (2H, 2ꢂd, J¼16.5 Hz, NCH2C6H5),
4.86 (1H, m, H-2), 4.96 (1H, s, H-5), 6.58 (1H, s, HC]), 7.08–7.40
(10H, m, ArH), 9.91 (1H, br s exchangeable, NH); 1H NMR (500 MHz,
4.3.9. (E)-2-(6-Methyl-4-(nitromethylene)-2-propylpyrimidin-
1(4H)-yl)cyclohexanol 4i
C6D6)
d
1.36 (3H, s, CH3), 2.69 and 2.87 (2H, 2ꢂdd, J¼12.9, 7.7,
Yellow powder from ethanol, mp 178 ꢁC; IR nmax (Nujol) 3330
5.8 Hz, CH2C6H5), 3.25 and 3.86 (2H, 2ꢂd, J¼16.6 Hz, NCH2C6H5),
4.36–4.40 (1H, m, H-2), 4.44 (1H, s, H-5), 6.80 (1H, s, HC]), 6.85–
7.26 (10H, m, ArH), 10.05 (1H, br s exchangeable, NH); 13C NMR
(OH),1620 (C]N),1550 (NO2) cmꢀ1; 1H (300 MHz, DMSO-d6)
d 0.94
(3H, t, J¼7.3 Hz, CH3CH2CH2), 1.25–1.42 (2H, m, CH2 ring), 1.71–1.81
and 1.99–2.07 (8H, 2ꢂm, CH2 CH2 CH2 ringþCH3CH2), 2.58 (3H, s,
CH3 on C-6), 2.87 (2H, t, J¼7.3 Hz, CH2 on C-2), 4.06 (1H, s, CHOH),
4.17 (1H, m, CH-N1), 5.12 (1H, s, OH exchangeable), 6.76 (1H, s,
(75 MHz)
d 20.2 (CH3), 37.6 (CH2C6H5), 54.0 (NCH2C6H5), 69.8 (CH-
2), 92.5 (CH-5), 106.6 (HC]), 126.9, 127.8, 128.6, 129.2, 129.6, 129.9
(10ꢂArCH), 135.3, 136.0 (ArCqu), 151.9 (C-6), 154.5 (C-4); 13C NMR
HC]), 7.73 (1H, s, H-5); 13C NMR (75.5 MHz, DMSO-d6)
d
14.2 (CH3),
(125.7 MHz, C6D6) d 18.7 (CH3), 37.3 (CH2C6H5), 53.5 (NCH2C6H5),
21.4 (CH2), 22.9 (CH3 on C-6), 24.3, 26.1, 30.6, 36.5 (4ꢂCH2 ring),
37.8 (CH2 on C-2), 68.3 (CHN-1), 69.6 (CHOH), 110.0 (CH-5), 114.7
(HC]), 155.8 (C-6), 156.9 (C-4), 162.9 (C-2); ESI-MS: m/z (% relative
intensity): 316 [MþNa] (100), 294 [Mþ1] (29), 248[Mþ1ꢀ46, NO2]
(15). Anal. Calcd for C15H23N3O3: C, 61.41; H, 7.90; N, 14.32. Found:
C, 61.45; H, 8.03; N, 14.21.
69.5 (CH-2), 92.1 (CH-5), 106.8 (HC]), 126.3, 126.9, 127.7, 128.9,
129.7 (10ꢂArCH), 135.8, 136.7 (ArCqu), 150.5 (C-6), 151.7 (C-4); ESI-
MS: m/z (% relative intensity): 358 [MþNa] (100), 336 [Mþ1] (92),
289 [Mþ1ꢀ46, NO2] (100). Anal. Calcd for C20H21N3O2: C, 71.62; H,
6.31; N, 12.53. Found: C, 71.75; H, 6.44; N, 12.35.
4.5.2. (Z)-2-(2-Benzyl-6-methyl-4-(nitromethylene)-3,4-
dihydropyrimidin-1(2H)-yl) ethanol 6b
4.4. Reaction of amidine 4a with glycine methyl ester
hydrochloride: synthesis of (E)-methyl 2-(2-benzyl-6-methyl-
4-(nitromethylene)pyrimidin-1(4H)-yl)acetate 4j
CH3CN/MeOH, 95:5; orange thick oil; IR nmax (CHCl3) 3271 (NH),
3018 (OH), 1593 (C]C), 1547 (NO2) cmꢀ1 1H NMR (300 MHz,
;
DMSO-d6)
d 2.06 (3H, s, CH3), 2.73–2.88 (1H, m, CH2N), 2.88–3.04
TEA (5.6 mL, 4 mmol) was added to a stirred suspension of
glycine methyl ester hydrochloride (0.502 g, 4 mmol) in CH2Cl2
(15 mL). After an additional 30 min stirring, amidine 3a (0.715 g,
2 mmol) was then added in CH2Cl2 (15 mL) solution. The reaction
mixture was heated at 35 ꢁC for 6 h until disappearance (TLC
monitoring) of the starting compound 3a, then quenched with
water and extracted with CH2Cl2 (3ꢂ30 mL). The combined organic
layers were washed with H2O (60 mL), dried with Na2SO4 and then
evaporated in vacuo. The crude residue was purified through
a short silica gel column (CH2Cl2/acetone/Et2O, 7:2:1) affording 4j.
Yield 78%, yellow crystals, mp 145 ꢁC; IR nmax (KBr) 1736 (C]O),
(2H, m, CH2C6H5), 3.06–3.43 (2Hþ1H, m, CH2OH and CH2N), 4.89
(1H, br s exchangeable, OH), 4.95 (1H, s, H-5), 5.19 (1H, s, H-2), 6.42
(1H, s, HC]), 7.15–7.35 (5H, m, ArH), 9.63 (1H, br s exchangeable,
NH); 13C NMR (75 MHz, DMSO-d6)
d 20.1 (CH3), 36.6 (CH2C6H5),
52.6 (CH2N), 60.5 (CH2OH), 69.2 (CH-2), 91.5 (CH-5), 105.2 (HC]),
127.5, 129.2, 130.5 (ArCH), 136.7 (ArCqu), 152.0 (C-6), 156.3 (C-4);
ESI-MS: m/z (% relative intensity): 290 [Mþ1] (100), 243 [Mþ1ꢀ46,
NO2] (35). Anal. Calcd for C15H19N3O3: C, 62.27; H, 6.62; N, 14.52.
Found: C, 62.37; H, 6.53; N, 14.43.
1638 (C]N), 1560 (NO2) cmꢀ1 1H NMR (200 MHz)
; d 2.23 (3H, s,
Acknowledgements
CH3), 3.66 (3H, s, OCH3), 4.03 (2H, s, CH2C6H5), 4.55 (2H, s,
NCH2COOCH3), 7.11 (1H, s, HC]), 7.18–7.40 (5H, m, ArH), 7.90 (1H, s,
`
Financial support by Ministero dell’Universita e della Ricerca
H-5); 13C NMR (50 MHz)
d 20.3 (CH3), 42.4 (CH2C6H5), 49.0
(MUR-PRIN 2005) is gratefully acknowledged. Thanks are due to
Mrs. D. Nava for providing the NMR two-dimensional experiments.
(NCH2COOCH3), 53.4 (OCH3), 108.9 (CH-5), 118.6 (HC]), 128.0,
128.7, 129.4 (ArCH), 133.6 (ArCqu), 151.2 (C-6), 155.4 (C-4), 158.7 (C-
2), 166.7 (C]O); ESI-MS: m/z (% relative intensity): 338 [MþNa]
(100), 316 [Mþ1] (10), 270 [Mþ1ꢀ46, NO2] (26). Anal. Calcd for
C16H17N3O4: C, 60.94; H, 5.43; N, 13.33. Found: C, 60.88; H, 5.45; N,
13.15.
References and notes
1. (a) Hsu, L.-Y.; Wise, D. S.; Shannon, W. M.; Drach, J. C.; Townsend, L. B. Nucle-
osides Nucleotides 1994, 13, 563–584; (b) Mansour, T. S.; Evans, C. A.; Charron,
M.; Korba, B. Bioorg. Med. Chem. Lett. 1997, 7, 303–308; (c) Wallis, M. P.; Mah-
mood, N.; Fraser, W. Farmaco 1999, 54, 83–89; (d) Kifli, N.; De Clercq, E.; Bal-
zarini, J.; Simons, C. Bioorg. Med. Chem. 2004, 12, 4245–4252; (e) Coutouli-
Argyropoulou, E.; Lianis, P.; Mitakou, M.; Giannoulis, A.; Nowak, J. Tetrahedron
2006, 62, 1494–1501.
2. (a) Kim, C.-H.; Marquez, V. E.; Mao, D. T.; Haines, D. R.; McKormack, J. J. J. Med.
Chem. 1986, 29, 1374–1380; (b) Blanalt-Feidt, S.; Doronina, S. O.; Behr, J. P.
Tetrahedron Lett. 1999, 6229–6232.
3. Yamane, A.; Inoue, H.; Uerda, T. Chem. Pharm. Bull. 1980, 28, 157–162.
4. Timoshchuk, V. Nucleosides, Nucleotides Nucleic Acids 2005, 24, 1043–1046.
5. Bertacche, V.; Contini, A.; Erba, E.; Nava, D.; Trimarco, P. Tetrahedron 2007, 63,
9652–9662.
6. Boyd, G. V. In The Chemistry of Amidines and Imidates; Patai, S., Rappoport, Z.,
Eds.; Interscience: London, 1991; Vol. 2, pp 375–378 and references cited
therein.
4.5. Reaction of the 4-(nitromethylene)-1,4-
dihydropyrimidines 4a, 4d with NaBH4: synthesis of
compounds 6a, 6b
To a stirred suspension of 4a (0.333 g, 1 mmol) or 4d (0.287 g,
1 mmol) in MeOH (25 mL) at 0 ꢁC was added, in portions, NaBH4
(0.227 g, 6 mmol). The reaction mixture was stirred at room tem-
perature until disappearance (about 2 h, TLC monitoring) of start-
ing compounds 4a or 4d. The mixture was quenched with water
and extracted with CH2Cl2 (4ꢂ30 mL). The combined organic layers
were washed with H2O (80 mL), dried with Na2SO4 and then
evaporated in vacuo. The crude residue was purified through
a short silica gel column (eluant indicated later) affording the cor-
responding 4-(nitromethylene)-1,4-dihydropyrimidine derivatives
6a or 6b, respectively, in pure form. Isolated yields of the products
6a and 6b are listed in Table 2.
7. Ellis, G. P. In Comprehensive Heterocyclic Chemistry; Boulton, A. J., Mc Killop, A.,
Eds.; Pergamon: Oxford, 1984; Vol. 3; p 681 and references cited therein.
8. Ram, V. J.; Srivastava, P.; Saxena, A. S. J. Org. Chem. 2001, 66, 5333–5337.
9. Moreno-Man˜as, M.; Pleixats, R. Adv. Heterocycl. Chem. 1992, 53, 56–65 and
references cited therein.
ˇ
10. Kadaba, P. K.; Stanovnik, B.; Tisler, M. Adv. Heterocycl. Chem. 1984, 37, 339–342
and references cited therein.
11. (a) Coustard, J. M. Eur. J. Org. Chem. 2001, 1525–1531; (b) Beit-Yannai, M.; Chen,
X.; Rappoport, Z. J. Chem. Soc., Perkin Trans. 2 2001, 1534–1545.
12. Buurman, D. J.; van Veldhuizen, A.; van der Plas, H. C. J. Org. Chem. 1990, 55,
778–780.
13. Ha¨felinger, G.; Kuske, F. K. H. In The Chemistry of Amidines and Imidates; Patai, S.,
Rappoport, Z., Eds.; Interscience: London, 1991; Vol. 2, pp 1–93 and references
cited therein.
4.5.1. (Z)-1,2-Dibenzyl-6-methyl-4-(nitromethylene)-1,2,3,4-
tetrahydropyrimidine 6a
CH2Cl2/acetone, 8:2; yellow crystals, mp 153–154 ꢁC; IR nmax
(CHCl3) 3254 (NH), 1593 (C]C), 1542 (NO2) cmꢀ1
;
1H NMR