C O M M U N I C A T I O N S
Scheme 2. Proposed Mechanistic Models
In summary, we have developed the first Cu-catalyzed ACA of
alkyl- and arylzinc reagents to unactivated â-substituted cyclic
enones; the catalytic protocol is operationally straightforward and
delivers cyclic ketones that bear all-carbon quaternary stereogenic
centers in excellent yields and 54-97% ee. This is the first
application of this class of chiral bidentate NHC ligands to catalytic
ACA reactions.
Acknowledgment. Financial support was provided by the NIH
(GM-47480) and the NSF (CHE-0213009). M.K.B. is a recipient
of an ACS Graduate Fellowship in Organic Chemistry (2005-6,
sponsored by Schering-Plough).
Supporting Information Available: Experimental procedures and
spectral, analytical data for all reaction products. This material is
References
(1) (a) Krause, N.; Hoffmann-Ro¨der, A. Synthesis 2001, 171-196. (b)
Alexakis, A.; Benhaim, C. Eur. J. Org. Chem. 2002, 3221-3236. (c)
Feringa, B. L.; Naasz, R.; Imbos, R.; Arnold, L. A. In Modern
Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim, 2002;
pp 224-258.
Scheme 3. Representative Functionalizations of ACA Products
(2) (a) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2001,
123, 755-756. (c) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am.
Chem. Soc. 2002, 124, 13362-13363. (c) Brown, M. K.; Degrado, S. J.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2005, 44, 5306-5310. For an
overview, see: (d) Hoveyda, A. H.; Hird, A. W.; Kacprzynski, M. A.
Chem. Commun. 2004, 1779-1785.
(3) (a) Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am. Chem. Soc. 2002,
124, 779-781. (b) Cesati, R. R., III; de Armas, J.; Hoveyda, A. H. J.
Am. Chem. Soc. 2004, 126, 96-101.
(4) (a) Luchaco-Cullis, C. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124,
8192-8193. (b) Mampreian, D. M.; Hoveyda, A. H. Org. Lett. 2004, 6,
2829-2832.
(5) Hird, A. W.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 1276-
1279.
(6) Hayashi, T.; Yamasaki, K. Chem. ReV. 2003, 103, 2829-2844.
(7) (a) Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105-10146. (b)
Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
5363-5367.
(8) d’Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem., Int. Ed. 2005,
44, 1376-1378.
(9) Wu, J.; Mampreian, D. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2005,
127, 4584-4585.
Enolsilane 19 is obtained with >98% regioselectivity and in >98%
yield when the mixture from Cu-catalyzed ACA of Ph2Zn to 5 is
treated with TMSOTf. Regioselective deprotonation of 15 with
LiTMP delivers enolsilane 20 in 96% isolated yield and with 88:
12 regioselectivity. Similarly, 5 is converted to enoltriflate 21
(>98% yield), which can be subjected to Pd-catalyzed cross-
coupling reactions.20 Conversion to cyclohexene 22 in 87% isolated
yield serves as a case in point (Scheme 3).
(10) Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 14988-
14989.
(11) Mauleon, P.; Carretero, J. C. Chem. Commun. 2005, 4961-4963.
(12) Fillion, E.; Wilsily, A. J. Am. Chem. Soc. 2006, 128, 2829-2844.
(13) (a) Van Veldhuizen, J. J.; Garber, S. B.; Kingsbury, J. S.; Hoveyda, A.
H. J. Am. Chem. Soc. 2002, 124, 4954-4955. (b) Van Veldhuizen, J. J.;
Gillingham, D. G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J. Am.
Chem. Soc. 2003, 125, 12502-12508. (c) Gillingham, D. G.; Kataoka,
O.; Garber, S. B.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 12288-
12290. (d) Van Veldhuizen, J. J.; Campbell, J. E.; Giudici, R. E.; Hoveyda,
A. H. J. Am. Chem. Soc. 2005, 127, 6877-6882.
The present class of transformations can be performed under
operationally simple conditions. As illustrated in eq 1, reactions
can be carried out with undistilled solVent and set up on benchtop
(Schlenck-ware not needed).Catalytic ACA can be effected with
commercially available (CuOTf)2‚toluene; nonetheless, use of
freshly prepared (CuOTf)2‚C6H6 leads to higher conversion.
Although this study was focused on ACA with (CuOTf)2‚C6H6 (for
maximum activity), as the examples in entries 5-6 of Table 1
indicate, more user-friendly Cu salts are effective. When the
catalytic ACA in eq 1 is carried out with commercially available
and air stable CuOAc, 6 is isolated in 86% yield and 90% ee. Cu-
catalyzed additions can be performed on reasonable scale; the
transformation in eq 1, at 0.5-g scale ((CuOTf)2‚C6H6; -40 °C,
8-12 h), delivers 6 in 87% ee and in quantitative yield.
(14) (a) Larsen, A. O.; Leu, W.; Nieto-Oberhuber, C.; Campbell, J. E.; Hoveyda,
A. H. J. Am. Chem. Soc. 2004, 126, 11130-11131. (b) Reference 13d.
(15) For catalytic ACAs of Et2Zn to disubstituted enones with NHC ligands,
see: (a) Guillen, F.; Winn, C. L.; Alexakis, A. Tetrahedron: Asymmetry
2001, 12, 2083-2086. (b) Pytkowicz, J.; Roland, S.; Mangeney, P.
Tetrahedron: Asymmetry 2001, 12, 2087-2089. (c) Alexakis, A.; Winn,
C. L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P. AdV. Synth.
Catal. 2003, 345, 345-348. (d) Arnold, P. L.; Rodden, M.; Davis, K.
M.; Scarisbrick, A. C.; Blake, A. J.; Wilson, C. Chem. Commun. 2004,
1612-1613. (e) Clavier, H.; Coutable, L.; Guillemin, J.-C.; Mauduit, M.
Tetrahedron: Asymmetry 2005, 16, 921-924.
(16) See the Supporting Information for experimental details.
(17) For Cu-catalyzed ACAs of Ph2Zn to the more reactive disubstituted enones,
see: (a) Schinneri, M.; Seitz, M.; Kaiser, A.; Reiser, O. Org. Lett. 2001,
3, 4259-4262. (b) Pena, D.; Lopez, F.; Harutyunyan, S. R.; Minnaard,
A. J.; Feringa, B. L. Chem. Commun. 2004, 1836-1837. (c) Shi, M.;
Wang, C.-J.; Zhang, W. Chem. Eur. J. 2004, 10, 5507-5516.
(18) Although rigorous evidence is not yet available, due to consideration of
steric factors, it is likely that monomeric NHC complex is the active
catalyst. The models proposed herein are preliminary and tentative; related
high-level calculations are being carried out, the results of which will be
reported in due course.
(19) For functionalization procedures involving enolsilane and enoltriflates
derived from catalytic ACA reactions, see: Knopff, O.; Alexakis, A. Org.
Lett. 2002, 4, 3835-3837 and references therein.
(20) (a) Ritter, K. Synthesis 1993, 8, 735-763. (b) Suarez, R. M.; Pena, D.;
Minnaard, A. J.; Feringa, B. L. Org. Biomol. Chem. 2005, 3, 729-731.
JA062061O
9
7184 J. AM. CHEM. SOC. VOL. 128, NO. 22, 2006