(via the keto aziridines13) can be utilized to produce single
diastereomers of cis-hydroxy aziridines 9a-d. For reduction
of the keto aziridines, NaBH4 in MeOH gave complete
stereocontrol with the cyclopentenes, but high stereoselec-
tivity with the cyclohexenes necessitated the use of L-
selectride in THF at -78 °C. The high cis-selectivity of these
reductions is mirrored in nucleophilic additions to the
corresponding keto-epoxides8,14 and results from attack on
the least hindered CdO face and anti to the adjacent C-O
Scheme 2. Reductive Alkylation of â-Alkoxy Aziridines
way, the sulfonamide group is retained in the product 7.10
Herein, we report the stereoselective synthesis of cyclic
â-methoxy aziridines cis-5 and their reductive alkylation to
substituted allylic amines 7.
Our route to cyclopentene and cyclohexene â-methoxy
aziridines cis-10a-d started with allylic alcohols 8a-d,
prepared by Luche reduction of the enones. Aziridination
of 8a-d using phenyltrimethylammonium tribromide (PTAB)
and Chloramine-T11 gave hydroxy aziridines 9a-d in high
yields (78-90%) and with a satisfactory degree of cis
selectivity (Scheme 3).
bond. Finally, methylation using Ag2O and MeI gave the
required â-methoxy aziridines cis-10a-d (typical NaH/MeI
conditions were much less successful).
The relative stereochemistry of hydroxy aziridines 9a and
9c was established unequivocally using an aza-Payne rear-
rangement.15 Only the trans-hydroxy aziridines will undergo
a base-mediated conversion into an amino epoxide. Thus,
upon reaction with KHMDS, trans-9a (n ) 0) gave epoxide
trans-11a and trans-9c (n ) 1) gave known16 epoxide trans-
11c (Scheme 4). The relative stereochemistry of hydroxy
aziridines 9b and 9d was assigned by analogy.
Scheme 4. Aza-Payne Rearrangement of trans-9a and -9c
Scheme 3. Synthesis of â-Methoxy Aziridines cis-10a-d
With â-methoxy aziridines cis-10a-d in hand, we were
now ready to study their reductive alkylation using excess
alkyllithiums. Our typical protocol involved reaction of the
â-methoxy aziridine with 2.5 equiv of alkyllithium in Et2O
at -78 °C for 5 min followed by warming to room
temperature over 1 h. In this way, â-methoxy aziridines cis-
10a-d were converted into substituted allylic amines 12-
15 in 6-67% yield (Scheme 5).
Two general conclusions can be made on the basis of these
preliminary results. First of all, cyclopentene aziridines
appear to be more susceptible to reductive alkylation and
thus they generally give higher yields of allylic amines (e.g.,
12a,b and 13a-c, 53-67% yield). This is consistent with
our previous findings on the rearrangement of aziridines to
allylic amines using sec-butyllithium and (-)-sparteine.4,5
The cis-selectivity of the aziridination presumably arises
from preferential bromination on the less hindered face of
the alkene (opposite to the hydroxyl group); similar stereo-
selectivity has been noted in an expanding number of related
examples.11,12 Aziridines cis- and trans-9a-d can be sepa-
rated by chromatography to give 44-68% isolated yields of
cis-9a-d. Alternatively, an oxidation-reduction sequence
(13) Related N-alkyl and N-CO2Et keto aziridines have been prepared
using other routes. See: (a) Fioravanti, S.; Pellacani, L.; Tabanella, S.;
Tardella, P. A. Tetrahedron 2003, 54, 14105. (b) Barros, M. T.; Maycock,
C. D.; Ventura, M. R. Tetrahedron Lett. 2002, 43, 4329.
(9) (a) Hodgson, D. M.; Stent, M. A. H.; Wilson, F. X. Org. Lett. 2001,
3, 3401. (b) Hodgson, D. M.; Stent, M. A. H.; Wilson, F. X. Synthesis
2002, 1445. (c) Hodgson, D. M.; Maxwell, C. R.; Miles, T. J.; Paruch, E.;
Matthews, I. R.; Witherington, J. Tetrahedron 2004, 60, 3611.
(10) A similar strategy using dihydrofuran aziridine and aziridines of
acyclic allylic ethers has recently been disclosed: Hodgson, D. M.; Stefane,
B.; Miles, T. J.; Witherington, J. Chem. Commun. 2004, 2234.
(11) Jeong, J. U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K. B.
J. Am. Chem. Soc. 1998, 120, 6844.
(12) (a) Caine, D.; O′Brien, P.; Rosser, C. M. Org. Lett. 2002, 4, 1923.
(b) Schmitt, A. C.; Smith, C. M.; Voight, E. A.; O’Doherty, G. A.
Heterocycles 2003, 62, 635. (c) Armstrong, A.; Cumming, G. R.; Pike, K.
Chem. Commun. 2004, 812.
(14) (a) Sepu´lveda, J.; Soto, S.; Mestres, R. Bull. Soc. Chim. Fr. 1983,
233. (b) Sepu´lveda, J.; Soriano, C.; Mestres, R.; Sendra, J. Bull. Soc. Chim.
Fr. 1983, 241. (c) Sepu´lveda, J.; Soriano, C.; Roquet-Jalmar, J.; Mestres,
R.; Riego, J. Bull. Soc. Chim. Fr. 1987, 189.
(15) (a) Ibuka, T.; Nakai, K.; Habashita, H.; Hotta, Y.; Otaka, A.;
Tamamura, H.; Fujii, N.; Chounan, Y.; Yamamoto, Y. J. Org. Chem. 1995,
60, 2044. (b) Hudlicky, T.; Rinner, U.; Gonzalez, D.; Akgun, H.; Schilling,
S.; Siengalewicz, P.; Martinot, T. A.; Pettit, G. R. J. Org. Chem. 2002, 67,
8726.
(16) (a) O’Brien, P.; Childs, A. C.; Ensor, G.; Hill, C. L. Kirby, J. P.;
Dearden, M. J.; Oxenford, S.; Rosser, C. M. Org. Lett. 2003, 5, 4955. (b)
Ba¨ckvall, J.-E.; Oshima, K.; Palermo, R. E.; Sharpless, K. B. J. Org. Chem.
1979, 44, 1953.
4818
Org. Lett., Vol. 6, No. 26, 2004