Organic Letters
Letter
Scheme 7. Completion of the Synthesis of the Wewakazoles
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
1
Experimental procedures; copies of H and 13C NMR
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the University of Nottingham for support.
■
REFERENCES
■
6.
(1) Nogle, L. M.; Marquez, B. L.; Gerwick, W. H. Org. Lett. 2003, 5, 3−
(2) Malloy, K. L.; Villa, F. A.; Engene, N.; Matainaho, T.; Gerwick, L.;
Gerwick, W. H. J. Nat. Prod. 2011, 74, 95−98.
(3) Lopez, J. A. V.; Al-Lihaibi, S. S.; Alarif, W. M.; Abdel-Lateff, A.;
Nogata, Y.; Washio, K.; Morikawa, M.; Okino, T. J. Nat. Prod. 2016, 79,
1213−1218.
(4) Long, B. H.; Zhang, J. Z.; Tang, X. D.; Wu, Z. Z. Org. Biomol. Chem.
2016, 14, 9712−9715.
(5) Nayani, K.; Hussaini, S. D. A. Tetrahedron Lett. 2017, 58, 1166−
1169.
(6) Bagley, M. C.; Bashford, K. E.; Hesketh, C. L.; Moody, C. J. J. Am.
Chem. Soc. 2000, 122, 3301−3313.
(7) Hughes, R. A.; Thompson, S. P.; Alcaraz, L.; Moody, C. J. J. Am.
Chem. Soc. 2005, 127, 15644−15651.
(8) Linder, J.; Blake, A. J.; Moody, C. J. Org. Biomol. Chem. 2008, 6,
3908−3916.
With wewakazole complete, attention turned to wewakazole B.
Coupling of the octapeptide 3 with the bis-oxazole fragment 5
proceeded in 76% yield using DMTMM in chloroform. The C-
terminal was deprotected first (85%), and then the Boc group
was removed from the N-terminal using HCl in dioxane (quant).
Cyclization was first attempted using the conditions reported by
Wu et al.,4 with HATU in dichloromethane. After 7 days, the
product could be isolated in 36% yield, with only a trace of
tetramethylurea proving difficult to remove. An attempt to use
PyBOP as the coupling agent, to circumvent the presence of the
urea side product, gave excellent conversion, but purification was
again very difficult due to the coelution of wewakazole B with the
tripyrrolidinophosphine oxide side product. As previously, the
best results were obtained using DMTMM in chloroform, which
gave a 78% yield of clean material after 5 days at room
temperature (Scheme 7). The spectroscopic data obtained for
synthetic wewakazole B matched the literature data for the
natural product.
(9) Wada, H.; Williams, H. E. L.; Moody, C. J. Angew. Chem., Int. Ed.
2015, 54, 15147−15151.
(10) Dexter, H. L.; Williams, H. E. L.; Lewis, W.; Moody, C. J. Angew.
Chem., Int. Ed. 2017, 56, 3069−3073.
(11) Bagley, M. C.; Buck, R. T.; Hind, S. L.; Moody, C. J. J. Chem. Soc.,
Perkin Trans. 1 1998, 591−600.
(12) Moody, C. J.; Bagley, M. C. J. Chem. Soc., Perkin Trans. 1 1998,
601−607.
(13) Doyle, K. J.; Moody, C. J. Tetrahedron 1994, 50, 3761−3772.
(14) Linder, J.; Garner, T. P.; Williams, H. E. L.; Searle, M. S.; Moody,
C. J. J. Am. Chem. Soc. 2011, 133, 1044−1051.
(15) Kunishima, M.; Kawachi, C.; Morita, J.; Terao, K.; Iwasaki, F.;
Tani, S. Tetrahedron 1999, 55, 13159−13170.
(16) Wipf, P.; Miller, C. P. J. Org. Chem. 1993, 58, 3604−3606.
In summary, the total syntheses of wewakazole and its
congener wewakazole B have been carried out using rhodium
catalyzed cycloadditions and N−H insertion reactions to provide
the oxazoles. The overall strategy is both convergent and
divergent in nature and can readily be applied to the synthesis of
analogues of the natural products.
D
Org. Lett. XXXX, XXX, XXX−XXX