ORGANIC
LETTERS
2
004
Vol. 6, No. 24
575-4577
Convenient Catalytic, Enantioselective
Conjugate Reduction of Nitroalkenes
Using CuF2
4
Constantin Czekelius and Erick M. Carreira*
Laboratorium f u¨ r Organische Chemie, ETH Z u¨ rich, ETH H o¨ nggerberg,
HCI, H335, CH-8093 Z u¨ rich
Received September 27, 2004
ABSTRACT
We document the use of a new catalyst system for the enantioselective conjugate reduction of nitroalkenes utilizing commercially available
CuF and the bis-phosphine JOSIPHOS as a ligand. This new protocol not only facilitates ready access to a variety of optically active nitroalkanes,
2
but the results provide also new insight into copper-catalyzed reactions.
t
3,4
Optically active nitroalkanes are valuable building blocks
in organic synthesis. They can be processed to other useful
chiral intermediates in fine-chemical synthesis such as
amines, aldehydes, or acids and can be employed as
CuO Bu and the chiral bis-phosphine JOSIPHOS. Use of
this catalyst system can effect the preparation of optically
active â,â-disubstituted nitroalkanes with catalyst loadings
t
as low as 0.1 mol %. The use of CuO Bu can be a drawback
1
precursors to nitrile oxides in dipolar cycloaddition reactions.
to the broad application of this process, because it is sensitive
to oxygen and moisture. Thus, we have been interested in
evaluating an alternative catalyst system for enantioselective
reduction of nitroalkenes employing inexpensive, com-
mercially available copper salts that are conveniently handled.
In this communication, we report such a system in which
There have been recent reports of highly enantioselective
2
addition reactions of various C-nucleophiles to nitroalkenes.
We have documented a novel conjugate reduction of â,â-
disubstituted nitroalkenes employing a catalyst prepared from
(1) (a) The Nitro Group in Organic Synthesis; Ono, N.; Wiley-VCH:
the combination of a chiral bis-phosphine ligand and CuF
can be employed (eq 1). The ability to use CuF was rather
2
2
New York, 2001. (b) Nitroalkenes; Perekalin, V. V.; Lipina, E. S.;
Berestovitskaya, V. M.; Efremov, D. A. John Wiley & Sons: Chichester,
4
1
994. (c) Nitro CompoundssRecent AdVances in Synthesis and Chemis-
unexpected, as we have previously shown that halides inhibit
this process. Additionally, we disclose an unusual observation
wherein nitromethane is used as an additive and activator
for the enantioselective reduction of more electron-rich
nitroalkene substrates.
try: Organic Nitro Chemistry Series; Feuer, H., Nielsen, A. T., Eds.; VCH:
Weinheim, 1990. (d) Seebach, D.; Colvin, E. W.; Lehr, F.; Weller, T. Chimia
1
979, 33, 1-18. For the concept of polarity control and umpolung, see:
e) Seebach, D. Angew. Chem., Int. Ed. Engl. 1979, 18, 239-258. (f)
Polarity Control for Synthesis; Ho, T.-L.; John Wiley & Sons: New York,
991.
2) (a) For a review, see: Berner, O. M.; Tedeschi, L.; Enders, D. Eur.
J. Org. Chem. 2002, 1877-1894. (b) Sch a¨ fer, H.; Seebach, D. Tetrahedron
995, 51, 2305-2324. (c) Sewald, N.; Wendisch, V. Tetrahedron: Asym-
(
1
(
1
metry 1998, 9, 1341-1344. (d) Ongeri, S.; Piarulli, U.; Jackson, R. F. W.;
Gennari, C. Eur. J. Org. Chem. 2001, 803-807. (e) Luchaco-Cullis, C.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 8192-8193. (f) Alexakis,
A.; Benhaim, C.; Rosset, S.; Humam, M. J. Am. Chem. Soc. 2002, 124,
5
262-5263. (g) Mampreian, D. M.; Hoveyda, A. H. Org. Lett. 2004, 6,
In our initial investigations of the enantioselective reduc-
tion of nitroalkenes, we had observed the inhibition of the
2829-2832. (h) Duursma, A.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem.
Soc. 2003, 125, 3700-3701. (i) Li, H.; Wang, Y.; Tang, L.; Deng, L. J.
Am. Chem. Soc. 2004, 126, 9906-9907. (j) Choi, H.; Hua, Z.; Ojima, I.
Org. Lett. 2004, 6, 2689-2691. (k) Ishii, T.; Fujioka, S.; Sekiguchi, Y.;
Kotsuki, H. J. Am. Chem. Soc. 2004, 126, 9558-9559.
(3) Czekelius, C.; Carreira, E. M. Angew. Chem., Int. Ed. 2003, 42,
4793-4795; Angew. Chem. 2003, 115, 4941-4943.
1
0.1021/ol048035h CCC: $27.50
© 2004 American Chemical Society
Published on Web 10/30/2004