10.1002/chem.201804373
Chemistry - A European Journal
COMMUNICATION
[4]
[5]
[6]
[7]
[8]
[9]
P. Kuhn, A. Forget, J. Hartmann, A. Thomas, M. Antonietti, Adv. Mater.
2009, 21, 897–901.
imidazolium salts (monomer, IMesxHCl) (Table 1). However, the
heterogeneous catalysis using solid imid-CTF as catalyst
provides significant benefits, in particular recyclability and
stability. We further investigated the recyclability of the
heterogeneous imid-CTF catalyst. The yields did not vary
significantly over 5 cycles, ranging from 75% – 81%. Obviously
no significant structural collapse or pore blocking causes an
activity loss. Control experiments were conducted, applying
catalyst samples prepared at higher temperatures of 320 °C and
330 °C, respectively (henceforth referred to as imid-CTF_320
and imid-CTF_330, see also ESI Table S1 and Fig. S16 for
further characterisation). Given the fact that the imidazolium
moiety will decompose upon thermal treatment, these samples
should provide drastically reduced catalytic activity. These
assumptions are strongly supported by poor yields of only 8 %
(imid-CTF_320) and 0.7 % (imid-CTF_330). Synthesising imid-
CTFs at temperatures of 330 °C or above results essentially in
negligible catalytic activity, which confirms the proposed thermal
decomposition characteristics and sensitivity of the imidazolium
moiety.
R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas, F. Schüth, Angew.
Chem., Int. Ed. 2009, 48, 6909–6912.
C. E. Chan-Thaw, A. Villa, P. Katekomol, D. Su, A. Thomas, L. Prati,
Nano Lett. 2010, 10, 537–541.
Z. Wang, C. Liu, Y. Huang, Y. Hu, B. Zhang, Chem. Commun. 2016, 52,
2960–2963.
Z. Li T. He, L. Liu, W. Chen, M. Zhang, G. Wu, P. Chen, Chem. Sci.
2017, 8, 781–788.
H. S. Jena, C. Krishnaraj, G. Wang, K. Leus, J. Schmidt, N. Chaoui, P.
Van Der Voort, Chem. Mater. 2018, 30, 4102–4111.
[10] K. Kamiya, R. Kamai, K. Hashimoto, S. Nakanishi, Nat. Commun. 2014,
5, 5040.
[11] K. Iwase, T. Yoshioka, S. Nakanishi, K. Hashimoto, K. Kamiya, Angew.
Chem., Int. Ed. 2015, 54, 11068–11072.
[12] R. Kamai, K. Kamiya, K. Hashimoto, S. Nakanishi, Angew. Chem., Int.
Ed. 2016, 55, 13184–13188.
[13] S. Yamaguchi, K. Kamiya, K. Hashimoto, S. Nakanishi, Chem.
Commun. 2017, 53, 10437–10440.
[14] K. Schwinghammer, S. Hug, M. B. Mesch, J. Senker, B. V. Lotsch,
Energy Environ. Sci. 2015, 8, 3345–3353.
[15] A. Bhunia, D. Esquivel, S. Dey, R. Fernández-Terán, Y. Goto, S.
Inagaki, P. Van Der Voort, C. Janiak, J. Mater. Chem. A 2016, 4,
13450–13457.
In summary, we have described the immobilisation of an
undamaged charged imidazolium moiety into a microporous
covalent triazine framework (imid-CTF).
synthetic protocol enabled the structural preservation of the
thermally labile imidazolium motif, which was verified by an
A finely adjusted
[16] C. B. Meier, R. S. Sprick, A. Monti, P. Guiglion, J.-S. M. Lee, M. A.
Zwijnenburg, A. I. Cooper, Polymer 2017, 126, 283–290.
[17] S. Kuecken, A. Acharjya, L. Zhi, M. Schwarze, R. Schomäcker, A.
Thomas, Chem. Commun. 2017, 53, 5854–5857.
1
in-depth structural characterisation, applying solid-state H MAS
[18] J. Roeser, K. Kailasam, A. Thomas, ChemSusChem 2012, 5, 1793–
1799.
NMR, XPS and FT-IR spectroscopy. The obtained imid-CTF is
active as a heterogeneous catalyst for conjugated Umpolung
reaction. More importantly, catalytic testing of the imid-CTF
provided clear evidence of an intact structure, since the
catalytically active carbene species is generated by proton
abstraction from the imidazolium moiety.
[19] M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510,
485–496.
[20] K. Oisaki, Q. Li, H. Furukawa, A. U. Czaja, O. M. Yaghi, J. Am. Chem.
Soc. 2010, 132, 9262–9264.
[21] M. B. Lalonde, O. K. Farha, K. A. Scheidt, J. T. Hupp, ACS Catal. 2012,
2, 1550–1554.
[22] G.-Q. Kong, X. Xu, C. Zou, C.-D. Wu, Chem. Commun. 2011, 47,
11005–11007.
Acknowledgements
[23] M. Rose, A. Notzon, M. Heitbaum, G. Nickerl, S. Paasch, E. Brunner, F.
Glorius, S. Kaskel, Chem. Commun. 2011, 47, 4814–4816.
[24] K. Park, K. Lee, H. Kim, V. Ganesan, K. Cho, S. K. Jeong, S. Yoon, J.
Mater. Chem. A 2017, 5, 8576–8582.
We acknowledge Dr. Ilka Kunert for performing the
thermogravimetric analysis, Sebastian Ehrling for performing
SEM measurements and Philipp Lange for performing the
elemental analysis.
E. T. has received funding from the Federal Ministry of
Education and Research (BMBF), support code 03XP0030
(“StickLiS”).
[25] G. H. Gunasekar, K. Park, V. Ganesan, K. Lee, N.-K. Kim, K.-D. Jung,
S. Yoon, Chem. Mater. 2017, 29, 6740–6748.
[26] T.-T. Liu, R. Xu, J.-D. Yi, J. Liang, X.-S. Wang, P.-C. Shi, Y.-B. Huang,
R. Cao, ChemCatChem 2018, 10, 2036–2040.
[27] C. Burstein, F. Glorius, Angew. Chem., Int. Ed. 2004, 43, 6205–6208.
[28] F. E. Hahn, M. C. Jahnke, Angew. Chem. 2008, 120, 3166–3216.
[29] D. Y. Osadchii, A. I. Olivos Suarez, A. V. Bavykina, J. Gascon,
Langmuir 2017, 33, 14278–14285.
Keywords: covalent triazine frameworks • microporous
materials • porous polymers • organocatalysis • N-heterocyclic
carbenes
[30] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-
Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87,
1051–1069.
[31] E. Troschke, S. Grätz, T. Lübken, L. Borchardt, Angew. Chem., Int. Ed.
2017, 56, 6859–6863.
[1]
[2]
A. Thomas, Angew. Chem., Int. Ed. 2010, 49, 8328–8344.
P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem., Int. Ed. 2008, 47,
3450–3453.
[32] K. Hirano, I. Piel, F. Glorius, Adv. Synth. Catal. 2008, 350, 984–988.
[3]
P. Kuhn, A. Forget, D. Su, A. Thomas, M. Antonietti, J. Am. Chem. Soc.
2008, 130, 13333–13337.
This article is protected by copyright. All rights reserved.