C O M M U N I C A T I O N S
Table 1. Reaction Yields for EGC II E351S Glycosynthase
by acylation of the lyso analogue using N-palmitoyl succinimide
as an acyl donor.
Reactions with Various Glycosyl Fluoride Donor Sugarsa
The ability of this enzyme to form the synthetically challenging
glycosidic bond between the oligosaccharide and lipid portions of
gangliosides and related glycolipids offers a new route to the
efficient assembly of glycosphingolipids, which should provide
avenues for the large-scale synthesis of these therapeutically
valuable compounds.
Acknowledgment. We thank Emily Kwan for technical as-
sistance, Dr. Hongming Chen for synthesis of substrates, Dr.
Krisztina Paal for advice, Dr. Warren Wakarchuk (NRC Canada
Institute for Biological Sciences) for supplying glycosyl transferase
enzymes, and the Protein Engineering Network of Centres of
Excellence (PENCE) for financial support.
a
Reaction conditions provided in Supporting Information. b Determined
Supporting Information Available: This material is available free
of charge via the Internet at http://pubs.acs.org.
by thin-layer chromatography with quantification by spot densitometry (refer
to Supporting Information for additional information).
References
of the candidate glycosynthase enzymes for 12 h at 25 °C, formation
of the glycosynthase product lyso-GM3 ganglioside (3) was catalyzed
by the Ser, Ala, and Gly mutant enzymes, but not the Asp mutant
(1) Miljan, E. A.; Bremer, E. G. Science’s STKE 2002, 160.
(
2) Malisan, F.; Testi, R. Biochim. Biophys. Acta 2002, 1585, 179-187.
3) Saito, M.; Guidotti, A.; Berg, M. J.; Marks, N. Ann. N.Y. Acad. Sci. 1998,
845, 253-262.
(
(4) Allende, M. L.; Proia, R. L. Curr. Opin. Struct. Biol. 2002, 12, 587-
(Scheme 1b). By using excess 1 or 2, it was possible to drive the
592.
reaction to near completion, with yields in excess of 90% obtained
with the E351S enzyme. The reaction has been performed with up
to 300 mg of 1 in the presence of excess 2. In this larger-scale
reaction, all of the glycosyl fluoride substrate was consumed, but
the isolated yield was reduced to 73% due to losses during the
purification, which required two C18 chromatographic steps. Further
optimization of the purification should significantly improve the
product yield.
As is the case for the hydrolytic activity of the wild-type
enzyme,22 the glycosynthase activity was enhanced by inclusion
of detergent in the reaction. Among the detergents tested, Triton
X-100 clearly gave the greatest rate acceleration. The use of 1,2-
dimethoxyethane or glycerol at 10-15% in place of the detergent
led to a similar rate enhancement, but this effect was not observed
for any other solvents tested.
(5) Favaron, M.; Manev, H.; Alho, H.; Bertolino, M.; Ferret, B.; Guidotti,
A.; Costa, E. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 7351-7355.
6) Malisan, F.; Testi, R. Exp. Gerontol. 2002, 37, 1273-1282.
(
(7) Hakomori, S. Glycoconjugate J. 2000, 17, 627-647.
(8) Nojiri, H.; Yamana, H.; Shirouzu, G.; Suzuki, T.; Isono, H. Cancer Detect.
PreV. 2002, 26, 114-120.
(9) Itoh, M.; Fukumoto, S.; Iwamoto, T.; Mizuno; A.; Rokutanda, A.; Ishida,
H. K.; Kiso, M.; Furukawa, K. Glycobiology 2001, 11, 25-130.
10) Ferrari, G.; Minozzi, M. C.; Zanellato, A. M.; Silvestrini, B. Ann. N.Y.
Acad. Sci. 1998, 845, 263-273.
(
(
11) Svennerholm, L.; Brane, G.; Karlsson, I.; Lekman, A.; Ramstorm, I.;
Wikkelso, C. Dementia Geriatr. Cognit. Disord. 2002, 14, 128-136.
(12) Matsuoka, Y.; Saito, M.; LaFrancois, J.; Saito, M.; Gaynor, K.; Olm, V.;
Wang, L.; Casey, E.; Lu, Y.; Shiratori, C.; Lemere, C.; Duff, K. J.
Neurosci. 2003, 23, 29-33.
(13) Pope-Coleman, A.; Schneider, J. S. Restor. Neurol. Neurosci. 1998, 12,
255-266.
(
(
14) Hickenbottom, S. L.; Grotta, J. Semin. Neurol. 1998, 18, 485-492.
15) Riley, E. P.; Thomas, J. D.; Goodlett, C. R.; Klintsova, A. Y.; Greenough,
W. T.; Hungund, B. L.; Zhou, F.; Sari, Y.; Powrozek, T.; Li, T. K. Alcohol
Clin. Exp. Res. 2001, 25, 110S-116S.
(
16) Sconocchia, G.; Ausiello, C. M.; Spagnoli, G. C.; Sciortino, G.; Filinger,
V.; Giudiceandrea, F.; Cervelli, V.; Adorno, D.; Casciani, C. U. Transplant
Int. 1992, 5, S544-S546.
Reaction products were obtained in high yields using other
(
(
17) Ito, Y.; Paulson, J. C. J. Am. Chem. Soc. 1993, 115, 1603-1605.
glycosyl fluoride donor sugars (Table 1). In addition to lyso-GM3
,
18) Hasegawa, A.; Kato, M.; Ando, T.; Ishida, H.; Kiso, M. Carbohydr. Res.
this approach was also effective in preparing the lyso analogue of
1995, 274, 165-181.
k
(19) Rich, J. R.; Bundle, D. R. Org. Lett. 2004, 6, 897-900.
20) Maccioni, H. J. F.; Giraudo, C. G.; Daniotti, J. L. Neurochem. Res. 2002,
G
M1 ganglioside and the P antigen (precursor to the globoside series
(
of glycosphingolipids), as well as lactosyl and cellobiosyl sphin-
gosines by coupling donors 4, 5, 6, and 7, respectively, with
D-erythro-sphingosine. Moreover, the enzyme was able to utilize
several additional sphingosine analogues (8-13) as acceptors,
illustrating the flexibility of this glycosynthase in the preparation
of a range of natural and unnatural glycosphingolipids. Although
N-palmitoyl-D-erythro-sphingosine (C16 ceramide) was not able to
act as an acceptor substrate due to its very low aqueous solubility,
intact GM3 ganglioside was easily prepared in near quantitative yield
27, 629-636.
(
(
21) Ito, M.; Yamagata, T. J. Biol. Chem. 1986, 261, 14278-14282.
22) Ito, M.; Yamagata, T. J. Biol. Chem. 1989, 264, 9510-9519.
(23) Ito, M.; Ikegami, Y.; Yamagata, T. Eur. J. Biochem. 1993, 218, 645-
649.
(
24) Izu, H.; Izumi, Y.; Kurome, Y.; Sano, M.; Kondo, A.; Kato, I.; Ito, M. J.
Biol. Chem. 1997, 272, 19846-19850.
(
25) Mackenzie, L. F.; Wang, Q.; Warren, R. A. J.; Withers, S. G. J. Am.
Chem. Soc. 1998, 120, 5583-5584.
(26) Wang, Q.; Tull, D.; Meinke, A.; Gilkes; N. R.; Warren, R. A.; Aebersold;
R.; Withers, S. G. J. Biol. Chem. 1993, 268, 14096-14102.
JA058469N
J. AM. CHEM. SOC.
9
VOL. 128, NO. 19, 2006 6301