Please do not adjust margins
Green Chemistry
Page 6 of 8
DOI: 10.1039/C5GC02493E
ARTICLE
Journal Name
attack of water as a nucleophile leads to intermediate
undergoes ring opening. 1,4-Dihydroxypentadienyl cation
gives compound through a 4p-conrotatory cyclization. The 11
hydrogenation-dehydration of compound produces 3-MCO.
4
which 10
J. B. Hendrickson and P. S. Palumbo, J. Org. Chem.,
1985, 50, 2110-2112.
5
6
P. Ceccherelli, M. Curini, M. C. Marcotullio, O. Rosati
and E. Wenkert, J. Org. Chem., 1990, 55, 311-315.
W. Kirmse, Angew. Chem. Int. Ed. Engl., 1997, 36, 1164-
1170.
6
Hydrogenation of 3-MCO produces MCPE. Finally, aldol 12
condensation of HDN catalyzed by ZnO gradually occurred to
give 3-MCO.
13
14
15
16
M. L. Karpinski, D. Nicholas and J. C. Gilbert, Org. Prep.
Proced. Int., 1995, 27, 569-570.
E. R. Sacia, M. H. Deaner, Y. L. Louie and A. T. Bell,
Green Chem., 2015, 17, 2393-2397.
Conclusions
T. Thananatthanachon and T. B. Rauchfuss, Angew.
Chem. Int. Ed., 2010, 49, 6616-6618.
In summary, we first developed an efficient method for direct
production of 3-MCO and HDN from bio-based HMF by water
splitting with Zn. In-situ generated hydrogen by oxidation of Zn
in water was effective for the conversion of HMF. The results
indicated that HTW showed good catalytic performance while
the addition of catalysts did not improve the selectivity and
yield in the process. The highest yield of 3-MCO was 30.5% and
F. Liu, M. Audemar, K. De Oliveira Vigier, J. M. Clacens,
F. De Campo and F. Jerome, ChemSusChem, 2014, 7,
2089-2093.
17
18
19
Z. Xu, P. Yan, W. Xu, X. Liu, Z. Xia, B. Chung, S. Jia and Z.
C. Zhang, ACS Catal., 2015, , 788-792.
5
o
S. Kotani, S. Aoki, M. Sugiura, M. Ogasawara and M.
Nakajima, Org. Lett., 2014, 16, 4802-4805.
E. O'Reilly, C. Iglesias, D. Ghislieri, J. Hopwood, J. L.
Galman, R. C. Lloyd and N. J. Turner, Angew. Chem.,
2014, 53, 2447-2450.
that of HDN was 27.3% at 250 C. The roles of HTW and ZnO
for the conversion of HMF were clarified and intermediates of
the reactions were also discussed.
20
21
22
H. Veisi, Tetrahedron Lett., 2010, 51, 2109-2114.
A. U. Vinod, e-EROS, 2004.
Acknowledgements
The authors gratefully acknowledge the financial support from
The State Key Program of National Natural Science Foundation
of China (No. 21436007). Key Basic Research Projects of
Science and Technology Commission of Shanghai
(14JC1403100). The Program for Professor of Special
Appointment (Eastern Scholar) at Shanghai Institutions of
Higher Learning (ZXDF160002). The Project-sponsored by SRF
for ROCS, SEM (BG1600002). We thank the all reviewers and
editors for reviewing the manuscript and providing valuable
comments.
F. Liu, M. Audemar, K. D. Vigier, J. M. Clacens, F. De
Campo and F. Jerome, Green Chem., 2014, 16, 4110-
4114.
23
24
25
26
J. Tuteja, H. Choudhary, S. Nishimura and K. Ebitani,
ChemSusChem, 2014, 7, 96-100.
A. V. Bandura, J. Phys. Chem. Ref. Data, 2006, 35, 15-
30.
N. Akiya and P. E. Savage, Chem. Rev., 2002, 102, 2725-
2750.
A. J. Ragauskas, C. K. Williams, B. H. Davison, G.
Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, Jr., J.
P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R.
Murphy, R. Templer and T. Tschaplinski, Science, 2006,
311, 484-489.
Notes and references
1
2
3
4
5
6
7
8
9
US Department of Energy, Top Value Added Chemicals
from Biomass, 2004
27
28
29
30
31
32
33
34
35
G. Guan, T. Kida, T. Ma, K. Kimura, E. Abe and A.
.
Yoshida, Green Chem., 2003,
F. M. Jin, Y. Gao, Y. J. Jin, Y. L. Zhang, J. L. Cao, Z. Wei
and R. L. Smith, Energ. Environ. Sci., 2011, , 881-884.
5, 630-634.
J. Zhang, L. Wang, Q. Liu, Z. Yang and Y. Huang, Chem
Commun, 2013, 49, 11662-11664.
4
S. V. Gagnier and R. C. Larock, J. Am. Chem. Soc., 2003,
125, 4804-4807.
Z. B. Huo, M. B. Hu, X. Zeng, J. Yun and F. M. Jin, Catal.
Today, 2012, 194, 25-29.
A. Kreuzer, S. Kerres, T. Ertl, H. Rucker, S. Amslinger
and O. Reiser, Org. Lett., 2013, 15, 3420-3423.
G. Piancatelli, A. Scettri and S. Barbadoro, Tetrahedron
Lett., 1976, 17, 3555-3558.
F. Jin, X. Zeng, J. Liu, Y. Jin, L. Wang, H. Zhong, G. Yao
and Z. Huo, Sci. Rep., 2014, 4, 4503-4511.
L. Lyu, X. Zeng, J. Yun, F. Wei and F. Jin, Environ. Sci.
Technol., 2014, 48, 6003-6009.
O. Geis and H.-G. Schmalz, Angew. Chem. Int. Ed. Engl.,
1998, 37, 911-914.
L. Xu, Z. Huo, J. Fu and F. Jin, Chem. Commun., 2014,
50, 6009-6012.
S. Hirano, S. Takagi, T. Hiyama and H. Nozaki, Bull.
Chem. Soc. Jpn, 1980, 53, 169-173.
F. Jin, A. Kishita and H. Enomoto, High Press. Res.,
2001, 20, 525-531.
Y. F. Zhou and N. Z. Huang, Synthetic Commun., 1982,
12, 795-800.
F. M. Jin and H. Enomoto, Energ. Environ. Sci., 2011, 4,
382-397.
T. L. Ho and S. H. Liu, Synthetic Commun., 1983, 13
,
Y. Q. Wang, F. M. Jin, M. Sasaki, Wahyudiono, F. W.
Wang, Z. Z. Jing and M. Goto, AIChE J., 2013, 59, 2096-
2104.
685-690.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins