Angewandte
Chemie
benzene and is very stable, due to the excellent synergistic
effects of TMG, MMT, and Ru nanoparticles. We believe that
other transition metals, such as Rh, Pd, and Ir, could also be
supported on MMT using this method and the resulting
materials could be used as efficient nanocatalysts.
[5]S. Papp, J. SzØl, A. Oszkó, I. DØkµny, Chem. Mater. 2004, 16,
674.
1
[
6]a) T. Welton, Chem. Rev. 1999, 99, 2071; b) P. Wasserscheid, W.
Keim, Angew. Chem. 2000, 112, 3926; Angew. Chem. Int. Ed.
2
2
000, 39, 3772; c) M. J. Earle, K. R. Seddon, Pure Appl. Chem.
000, 72, 1391; d) “Ionic Liquids as Green Solvents: Progress
and Prospects”, ACS Symp. Ser. 2003, 856.
[
7]L. A. Blanchard, D. Hancu, E. J. Beckman, J. F. Brennecke,
Nature 1999, 399, 28.
Experimental Section
[
8]a) J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner,
S. R. Teixeira, J. Am. Chem. Soc. 2002, 124, 4228; b) Y. Zhou, M.
Antonietti, J. Am. Chem. Soc. 2003, 125, 14960; c) K. S. Kim, D.
Demberelnyamba, H. Lee, Langmuir 2004, 20, 556.
9]J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang, G.
Zhao, Angew. Chem. 2004, 116, 1421; Angew. Chem. Int. Ed.
Preparation of the catalyst: Na montmorillite with a cation-exchange
À1
capacity (CEC) of 1.0 meqg was supplied by Hongyan Mining Co.
We only describe the preparation of catalyst A because the proce-
dures to prepare catalysts B, C, and D are nearly the same and have
been described briefly above. In the experiment to synthesize
catalyst A, about 1.0 g of MMT was dispersed in an aqueous solution
of the IL by stirring for about 4 h. The molar ratio of IL to the CEC of
MMT was 1.1:1. The MMT was then separated from the solution by
centrifugation and was treated again with an aqueous solution of the
IL. This procedure was repeated three times. The IL-exchanged MMT
was then washed several times with distilled water. The exchanged
[
2
004, 43, 1397.
10]a) T. Naota, H. Takaya, S.-I. Murahashi, Chem. Rev. 1998, 98,
599; b) O. Vidoni, K. Philippot, C. Amiens, B. Chaudret, O.
[
2
Balmes, J. O. Malm, J. O. Bovin, F. Senocq, M. J. Casanove,
Angew. Chem. 1999, 111, 3950; Angew. Chem. Int. Ed. 1999, 38,
3736; c) K. Pelzer, O. Vidoni, K. Philippot, B. Chaudret, V.
MMT was dispersed in 5 mL of an aqueous solution of RuCl with a
3
À1
Colliere, Adv. Funct. Mater. 2003, 13, 118; d) E. T. Silveira, A. P.
Umpierre, L. M. Rossi, G. Machado, J. Morais, G. V. Soares,
I. J. R. Baumvol, S. R. Teixeira, P. F. P. Fichtner, J. Dupont,
Chem. Eur. J. 2004, 10, 3734; e) V. A. Mazzieri, P. C. LꢀArge-
ntire, F. Coloma-Pascual, N. S. Fígoli, Ind. Eng. Chem. Res.
concentration of 8 mgmL . The water was then removed by
evaporation. The final Ru/MMT catalyst was obtained after hydro-
genation of the solid at 2208C for 2 h. The mass content of Ru in the
composite was 3.3 wt.%, which was calculated based on the amounts
of clay and RuCl added.
3
2003, 42, 2269; f) C. M. Hagen, L. Vieille-Petit, G. Laurenczy, G.
Hydrogenation of benzene: The reactions were carried out in a
Süss-Fink, R. G. Finke, Organometallics 2005, 24, 1819; g) L. M.
Rossia, G. Machadoa, P. F. P. Fichtnerb, S. R. Teixeirac, J.
Duponta, Catal. Lett. 2004, 92, 149; h) G. S. Fonseca, E. T.
Silveira, M. A. Gelesky, J. Dupont, Adv. Synth. Catal. 2005, 347,
2
0-mL, stainless-steel autoclave equipped with a magnetic stirrer. In a
typical experiment, 87 mg of Ru nanocatalyst and 2.0 g of benzene
were placed in the autoclave and the air was replaced by H within
1
temperature. More hydrogen was added to reach the pressure of
interest. After the appropriate time the temperature was lowered to
room temperature quickly in an ice-water bath and the hydrogen
pressure was released. The products were analyzed by GC (Agilent
2
0 min. The reaction mixture was stirred (300 rpm) at the desired
847.
[
[
[
[
11]H. X. Gao, B. X. Han, J. C. Li, T. Jiang, Z. M. Liu, W. Z. Wu,
Y. H. Chang, J. M. Zhang, Synth. Commun. 2004, 34, 3083.
12]G. Süss-Fink, M. Faure, T. R. Ward, Angew. Chem. 2002, 114,
1
05; Angew. Chem. Int. Ed. 2002, 41, 99.
13]P. J. Dyson, D. J. Ellis, D. G. Parker, T. Welton, Chem. Commun.
999, 25.
4
890 D).
1
Received: July 27, 2005
Revised: October 10, 2005
Published online: November 28, 2005
14]J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben in
Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer,
Eden Prairie, MN, 1992.
[
[
15]B. Yang, Q. Y. Lu, Y. Wang, L. Zhuang, J. T. Lu, P. F. Liu, Chem.
Mater. 2003, 15, 3552.
16]a) S. Aoki, K. Iwaida, N. Hanamoto, M. Shiro, E. Kimura, J. Am.
Chem. Soc. 2002, 124, 5256; b) P. J. Bailey, S. Pace, Coord. Chem.
Rev. 2001, 214, 91.
Keywords: clays · heterogeneous catalysis · hydrogenation ·
ionic liquids · ruthenium
.
[
1]a) J. Dale, M. Kowalska, D. L. Cocke, Chemosphere 1991, 22,
69; b) J. Sterte, Clays Clay Miner. 1986, 34, 658.
7
[
2]a) T. J. Pinnavaia, Science 1983, 220, 365; b) A. Gil, L. M.
Gandia, M. A. Vicente, Catal. Rev. Sci. Eng. 2000, 42, 145;
c) “Pillared Clays”: R. Burch in Catalysis Today, Vol. 2, Elsevier,
New York, 1988, p. 185; d) J. L. Valverde, A. de Lucas, P.
Sµnchez, F. Dorado, A. Romero, Appl. Catal. B 2003, 43, 43;
e) B. M. Choudary, M. L. Kantam, K. V. S. Ranganath, K. K.
Rao, Angew. Chem. 2005, 117, 326; Angew. Chem. Int. Ed. 2005,
44, 322; f) B. Veisz, Z. Kirµly, L. Tóth, B. PØcz, Chem. Mater.
2002, 14, 2882; g) M. D. Nikalje, A. Sudalai, Tetrahedron 1999,
55, 5903; h) D. Dolmazon, R. Aldea, H. Alper, J. Mol. Catal. A:
Chem. 1998, 136, 147; i) L. X. Shao, M. Shi, Adv. Synth. Catal.
003, 345, 963; j) J. S. Yadav, B. V. S. Reddy, A. K. Raju, D.
2
Gnaneshwar, Adv. Synth. Catal. 2002, 344, 938; k) Z. H. Han,
H. Y. Zhu, S. R. Bulcock, S. P. Ringer, J. Phys. Chem. B 2005,
1
09, 2673.
3]Z. Kirµly, B. Veisz, . Mastalir, Gy. Köfaragó, Langmuir 2001,
7, 5381 – 5387.
4]T. Kawabata, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem.
Soc. 2003, 125, 10486.
[
[
1
Angew. Chem. Int. Ed. 2006, 45, 266 –269
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
269