Page 7 of 8
Pleas eC dr yo s nt oE tn agd Cj uos mt mm argins
DOI: 10.1039/C7CE00702G
Journal Name
COMMUNICATION
Additionally, the Ru/CoNiꢀ120ꢀethanol catalyst exhibited jxxjbs15008), and National Natural Science Foundation of China
relatively high catalytic activity compared to most of the reported (Grant No. 21466013).
32ꢀ34,44,61,63ꢀ66
catalysts under similar reaction conditions.
For example,
it showed much better catalytic performance than the monolithic
Ni@Pd catalyst for benzene hydrogenation under milder reaction
Notes and references
4
4
conditions. And the stability of the Ru/CoNiꢀ120ꢀethanol catalyst
in benzene hydrogenation reaction is shown in Fig. 10A. The results
demonstrate that there is no obvious deactivation of the catalyst after
recycled for five times. SEM measurement for the recycled
Ru/CoNiꢀ120ꢀethanol catalyst was also performed, and SEM image
is displayed in Fig. 10B. The dendriteꢀlike crystals can be clearly
seen. The morphology of the catalyst was without change before and
after catalytic reaction. Therefore, we can infer that the Ru/CoNi
catalysts are relatively stable during reaction.
1
D. M. Alonso, S. G. Wettstein and J. A. Dumesic, Chem. Soc.
Rev., 2012, 41, 8075–8098.
L. Kesavan, R. Tiruvalam, M. H. Ab Rahim, M. I. bin Saiman,
D. I. Enache, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez,
S. H. Taylor, D. W. Knight, C. J. Kiely and G. J. Hutchings,
Science, 2011, 331, 195–199.
S. Wang, Z. Xin, X. Huang, W. Yu, S. Niu and L. Shao, Phys.
Chem. Chem. Phys., 2017, 19, 6164–6168.
C. K. S. Choong, L. Chen, Y. Du, M. Schreyer, S. W. D. Ong, C.
K. Poh, L. Hong and A. Borgna, Phys. Chem. Chem. Phys.,
2
3
4
2
017, 19, 4199–4207.
5
N. M. AlYami, A. P. LaGrow, K. S. Joya, J. Hwang, K. Katsiev, D.
H. Anjum, Y. Losovyj, L. Sinatra, J. Y. Kim and O. M. Bakr,
Phys. Chem. Chem. Phys., 2016, 18, 16169–16178.
J. Y. Park, Y. Zhang, S. H. Joo, Y. Jung and G. A. Somorjai,
Catal. Today, 2012, 181, 133–137.
C.-Y. Lu, H.-H. Tseng, M.-Y. Wey, L.-Y. Liu and K.-H. Chuang,
Mater. Sci. Eng. B, 2009, 157, 105–112.
S. Alayoglu, A. U. Nilekar, M. Mavrikakis and B. Eichhorn,
6
7
8
Nat. Mater., 2008,
X. Liu, D. Wang and Y. Li, Nano Today, 2012,
0 M. Y. Rafique, L. Pan, W. S. Khan, M. Z. Iqbal, H. Qiu, M. H.
Farooq, M. Ellahi and Z. Guo, CrystEngComm, 2013, 15
314–5325.
1 H. Li, J. Liao, Y. Du, T. You, W. Liao and L. Wen, Chem.
Commun., 2013, 49, 1768–1770.
2 R. Ferrando, J. Jellinek and R. L. Johnston, Chem. Rev., 2008,
7, 333–338.
9
1
7, 448–466.
,
Fig. 10. (A) Stability of the Ru/CoNiꢀ120ꢀethanol catalyst for
benzene hydrogenation, reaction conditions: benzene (10 mL),
reaction time (1 h), reaction temperature (100 °C), reaction pressure
5
1
1
1
(5.3 MPa); and (B) SEM image of the Ru/CoNiꢀ120ꢀethanol catalyst
recycled for five runs.
108, 845–810.
3 O. Ergeneman, K. M. Sivaraman, S. Pané, E. Pellicer, A. Teleki,
A. M. Hirt, M. D. Baró and B. J. Nelson, Electrochim. Acta,
4
Conclusions
2
011, 56, 1399–1408.
4 B. M. Muñoz-Flores, B. I. Kharisov, V. M. Jiménez-Pérez, P. E.
Martínez and S. T. López, Ind. Eng. Chem. Res., 2011, 50
705–7721.
1
,
In conclusion, the CoNi alloy crystal with the flowerꢀlike and
mushroomꢀlike shape was synthesized by modulating the
hydrothermal synthesis temperature with water as solvent. And the
dendriteꢀlike CoNi nanomaterial was obtained at 120 °C by using
ethanol as solvent. We have explained the probable formation
mechanism for the flowerꢀlike and dendriteꢀlike CoNi alloy crystal.
The corresponding Ru/CoNi catalysts (RuꢀonꢀCoNi alloy crystal)
were synthesized by galvanic replacement reaction and applied in
benzene hydrogenation reaction. The Ru/CoNiꢀ120ꢀethanol catalyst
with the morphology of dendriteꢀlike exhibited the best catalytic
performance among the asꢀobtained Ru/CoNi catalysts with different
shapes in this work, with 100% yield to cyclohexane and r of 13819
7
1
1
1
5 L. Chen, Q. Zhu, Z. Hao, T. Zhang and Z. Xie, Int. J. Hydrogen
Energy, 2010, 35, 8494–8502.
6 Q. Y. Liu, X. H. Guo, T. J. Wang, Y. Li and W. J. Shen, Mater.
Lett., 2010, 64, 1271–1274.
7 P. Cojocaru, L. Magagnin, E. Gomez, E. Vallés, F. Liu, C.
Carraro and R. Maboudian, J. Micromech. Microeng., 2010,
20, 125017–125022.
8 R. Brayner, V. Marie-Josèphe, F. Fiévet and T. Coradin, Chem.
Mater., 2007, 19, 1190–1198.
1
1
2
2
9 T. Yamauchi, Y. Tsukahara, K. Yamada, T. Sakata and Y.
Wada, Chem. Mater., 2011, 23, 75–84.
0 X. Guo, L. I. Yong, Q. Liu and W. Shen, Chin. J. Catal., 2012,
ꢀ
1
ꢀ1
mol molRu
h under the reaction conditions of reaction time (1.5 h),
reaction temperature (100 °C) and reaction pressure (5.3 MPa H2).
The excellent catalytic property of the Ru/CoNiꢀ120ꢀethanol catalyst
33, 645–650.
1 M. J. Hu, B. Lin and S. H. Yu, Nano Res., 2008,
1, 303–313.
with dendriteꢀlike shape is probably due to the high Ru dispersion, 22 N. A. M. Barakat, K. A. Khalil, I. H. Mahmoud, M. A. Kanjwal,
numerous defect sites and positive synergistic effect among
ruthenium, nickel and cobalt related species.
F. A. Sheikh and H. Y. Kim, J. Phys. Chem. C, 2010, 114,
15589–15593.
2
2
3 A. Arief and P. K. Mukhopadhyay, J. Magn. Magn. Mater.,
014, 372, 214–223
4 L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J.
Lin, Y. J. Xu, W. P. Xu, W. B. Wu and S. H. Yu, Adv. Funct.
Mater., 2013, 23, 5930–5940.
2
Acknowledgements
2
2
2
5 M. H. Rashid, M. Raula and T. K. Mandal, J. Mater. Chem.,
2
The works reported in this publication were funded by the Natural
Science Foundation of Jiangxi Province of China (Grant No.
011, 21, 4904–4917.
6 M.-J. Hu, Y. Lu, S. Zhang, S.-R. Guo, B. Lin, M. Zhang and S.-H.
Yu, J. Am. Chem. Soc., 2008, 130, 11606–1167.
2
0161BAB213083), Research Foundation of Education Bureau of
Jiangxi Province of China (GJJ160666), Doctor Starting Foundation
of Jiangxi University of Science and Technology of China (Grant No.
7 D.-E. Zhang, X.-M. Ni, X.-J. Zhang and H.-G. Zheng, J. Magn.
Magn. Mater., 2006, 302, 290–293.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins