22
Z. Saedi et al. / Catalysis Communications 17 (2012) 18–22
bond in alkenes, this catalytic system has the following advantages:
i) using H2O2 as a clean and green oxidant, ii) no need to phase
transfer catalyst, iii) high to excellent yield, and iv) MIL-101 is a
heterogeneous and reusable catalyst.
Acknowledgment
We are thankful to the Center of Excellence of Chemistry of the
University of Isfahan for financial support of this work.
References
[1] J.R. Li, R.J. Kuppler, H.C. Zhou, Chemical Society Reviews 38 (2009) 1477–1504.
[2] Z. Chang, D.-S. Zhang, T.-L. Hu, X.-H. Bu, Inorganic Chemistry Communications 14
(2011) 1082–1085.
[3] M.H. Alkordi, Y. Liu, R.W. Larsen, J.F. Eubank, M. Eddaoudi, Journal of the American
Chemical Society 130 (2008) 12639–12641.
[4] D. Jiang, T. Mallat, F. Krumeich, A. Baiker, Journal of Catalysis 257 (2008) 390–395.
[5] S. Horike, M. Dinc , K. Tamaki, J.R. Long, Journal of the American Chemical Society
130 (2008) 5854–5855.
Scheme 2. Catalytic oxidation of cyclohexene, cyclohexene oxide and trans-1,2-
cyclohexandiol to adipic acid.
[6] J.-Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chemical Society
Reviews 38 (2009) 1450–1459.
[7] K.S. Min, M.P. Suh, Journal of the American Chemical Society 122 (2000)
6834–6840.
[8] A. Schaate, M. Schulte, M. Wiebcke, A. Godt, P. Behrens, Inorganica Chimica Acta
362 (2009) 3600–3606.
[9] L. Jiang, Z.-X. Li, Y. Wang, G.-D. Feng, W.-X. Zhao, K.-Z. Shao, C.-Y. Sun, L.-J. Li, Z.-M.
Su, Inorganic Chemistry Communications 14 (2011) 1077–1081.
[10] G. Lu, J.T. Hupp, Journal of the American Chemical Society 132 (2010) 7832–7833.
[11] E.A. Tomic, Journal of Applied Polymer Science 9 (1965) 3745–3752.
[12] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Nature 402 (1999) 276–279.
[13] S.-H. Cho, B. Ma, S.T. Nguyen, J.T. Hupp, T.E. Albrecht-Schmitt, Chemical
Communications (2006) 2563–2565.
Table 3
Comparison of the results obtained for the oxidation of cyclooctene catalyzed by MIL-
101 with those obtained by the recently reported catalysts.
Catalyst
Oxidant
T
TOF
Ref.
(°C) (h−1
)
InCl3
OsO4
t-BuOOH (70%) 90 0.58
Oxone
[25]
[27]
[28]
[31]
Present
work
rt
85
rt
27.33
5.71
20.45
18.56
[(n-Octyl)3NCH3]3{PO4[W(O)(O2)2]4} H2O2 (30%)
RuCl3
MIL-101
NaIO4
H2O2 (30%)
70
[14] F.X. Llabrés i Xamena, A. Abad, A. Corma, H. Garcia, Journal of Catalysis 250 (2007)
294–298.
[15] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Advanced Synthesis and Catalysis
351 (2009) 2271–2276.
[16] E. Pérez-Mayoral, J. Čejka, ChemCatChem 2 (2010) 1–3.
[17] D.N. Dybtsev, A.L. Nuzhdin, H. Chun, K.P. Bryliakov, E.P. Talsi, V.P. Fedin, K. Kim,
Angewandte Chemie International Edition 45 (2006) 916–920.
[18] D. Jiang, T. Mallat, F. Krumeich, A. Baiker, Journal of Catalysis 257 (2008) 390–395.
[19] T. Ladrak, S. Smulders, O. Roubeau, S.J. Teat, P. Gamez, J. Reedijk, European Journal
of Inorganic Chemistry (2010) 3804–3812.
cyclohexene oxide and trans-1,2-cyclohexanediol were 8, 2 and 1.5 h,
respectively. These observations clearly prove that the alkene first is
converted to epoxide and then, upon epoxide ring-opening a diol is
produced which finally oxidized to diacid [35]. These results well de-
scribed that the rate determination step (RDS) is conversion of alkene
to epoxide step, then other steps take place fast.
[20] F.X. Llabrés i Xamena, O. Casanova, R.G. Tailleur, H. Garcia, A. Corma, Journal of
Catalysis 255 (2008) 220–227.
[21] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble´, I. Margiolaki,
Science 309 (2005) 2040–2042.
[22] A. Henschel, K. Gedrich, R. Kraehnert, S. Kaskel, Chemical Communications
(2008) 4192–4194.
[23] J. Kim, S. Bhattacharjee, K.-E. Jeong, S.-Y. Jeong, W.-S. Ahn, Chemical Communications
(2009) 3904–3906.
[24] E.V. Ramos-Fernandez, M. Garcia-Domingos, J. Juan-Alcãniz, J. Gascon, F. Kapteijn,
Applied Catalysis A: General 391 (2011) 261–267.
[25] B.C. Ranu, S. Bhadra, L. Adak, Tetrahedron Letters 49 (2008) 2588–2591.
[26] S.-K. Lee, R. Raja, K.D.M. Harris, J.M. Thomas, B.F.G. Johnson, G. Sankar, Angewandte
Chemie International Edition 42 (2003) 1520–1523.
[27] B.R. Travis, R.S. Narayan, B. Borhan, Journal of the American Chemical Society 124
(2002) 3824–3825.
[28] E. Antonelli, R. D'Aloisio, M. Gambaro, T. Fiorani, C. Venturello, Journal of Organic
Chemistry 63 (1998) 7190–7206.
[29] T.A. Foglia, P.A. Barr, A.J. Malloy, Journal of the American Oil Chemists' Society 54
(1977) 858A–861A.
In comparison with previously reported methods for oxidation of
alkenes to carboxylic acids, the presented method is more efficient
and more acceptable. For example, although ozonolysis is a very reli-
able method, ozone gas is highly toxic and damaging to human health
and its generation requires special instrumentation. On the other
hand, OsO4 is highly volatile and toxic and is not environmentally
benign which restrict its use for large-scale applications in industry
[27]. Ruthenium compounds are very expensive [31]. InCl3[25] and
[(n-Octyl)3NCH3]3{PO4[W(O)(O2)2]4} [28] have low TOF. Thus, in
comparison with these methods, aqueous H2O2, which is a clean
and green oxidant, in the presence of MIL-101 is an efficient method
for oxidation of alkenes to acids especially if the oxidation reaction is
achieved with a H2O2 concentration of b60% (Table 3).
[30] H. Sokumoto, K. Ohtsuka, S. Banjoya, Synlett (2007) 3201–3207.
[31] F. Zimmermann, E. Meux, J.-L. Mieloszynski, J.-M. Lecuire, N. Oget, Tetrahedron
Letters 46 (2005) 3201–3203.
4. Conclusion
[32] D. Xing, B. Guan, G. Cai, Z. Fang, L. Yang, Z. Shi, Organic Letters 8 (2006) 693–696.
[33] P.P. Thottumkara, T.K. Vinod, Organic Letters 12 (2010) 5460–5463.
[34] N.V. Maksimchuk, M.N. Timofeeva, M.S. Melgunov, A.N. Shmakov, Y.A. Chesalov,
D.N. Dybtsev, V.P. Fedin, O.A. Kholdeeva, Journal of Catalysis 257 (2008) 315–323.
[35] K. Sato, M. Aoki, R. Noyori, Science 281 (1998) 1646–1647.
Summary, in this work, a new route for conversion of alkenes to
their corresponding carboxylic acids is reported based on catalytic
properties of MIL-101 metal–organic framework. Comparison with
other systems that reported for oxidative cleavage of C-C double