G. V. M. Sharma, T. Gopinath / Tetrahedron Letters 42 (2001) 6183–6186
6185
1
formation of 2 and 1, which were identical in all
respects with the products prepared from the a-anomer
8.
CHCl ); H NMR (200 MHz, CDCl ): l 0.92 (t, 3H,
3
3
J=7.4 Hz, CH ), 1.18–1.50 (m, 7H, 2CH , CH ), 1.58–
1.76 (m, 2H, CH ), 2.50 (dq, 1H, J=8.2, 7.7 Hz, H-5),
.65 (dd, 1H, J=8.2, 4.5 Hz, H-2), 3.30 (s, 3H, OMe),
3
2
3
2
2
During the radical cyclisation of 8 and 8a, the effect of
the 2%-stereocentre in the xanthate in altering the ratios
of the products 9 and 10 (3:1) 9a and 10a (1.5:1), may
be explained as depicted in Fig. 1.
3.96 (ddd, 1H, J=6.9, 5.9, 4.1 Hz, H-4), 4.77 (s, 1H,
H-1), 4.89 (dd, 1H, J=6.9, 4.5 Hz, H-3); FABMS: 228
+
−1
(M ); IR (neat); 1770 cm ; Compound 11a: [h] =
D
1
+37.73 (c 0.50, CHCl
); H NMR (200 MHz, CDCl
): l
3
3
0
.92 (t, 3H, J=7.2 Hz, CH ), 1.22–1.54 (m, 7H, 2CH ,
3
2
Compound 8 (R=OMe) undergoes cyclisation through
CH ), 1.64–1.80 (m, 2H, CH ), 2.84 (dq, 1H, J=8.9, 7.3
Hz, H-5), 2.98 (dd, 1H, J=9.1, 6.9 Hz, H-2), 3.32 (s,
3
2
‘
chair-like’ transition state ‘A’ to give the 2,5-cis
3
H, OMe), 3.98 (ddd, 1H, J=7.7, 7.4, 3.2 Hz, H-4),
.80 (dd, 1H, J=6.9, 3.2 Hz, H-3), 4.94 (s, 1H, H-1);
product 9 (major) while the minor product 10 results
through the transition state ‘B’. Similarly, 8a (R%=
OMe) gave 9a through transition state ‘A’ while 10a is
formed through transition state ‘B’. In the case of
cyclisation of 8, the 2,5-cis product 9 is the major
product, where the a-OMe (C-1) and Me (C-5) are
placed apart from each other. However, due to the
presence of the b-OMe in 8a, the cyclisation resulted in
the prodcuts 9a and 10a in almost equal quantities
4
+
−1
FABMS: 228 (M ); IR (neat); 1770 cm ; Compound 1:
10
mp 92°C; lit. mp 94°C; [h] =+30.9 (c 0.50, CHCl );
D
3
10
1
lit. [h] =+29.8 (c 0.35, CHCl ); H NMR (400 MHz,
D
3
CDCl ): l 0.92 (t, 3H, J=7.6 Hz, CH ), 1.38–1.55 (m,
3
3
7
H, 2CH , CH ), 1.76–1.98 (m, 2H, CH ), 3.02 (dq, 1H,
2 3 2
J=8.0, 1.2 Hz, H-5), 3.08 (dd, 1H, J=6.4, 1.2 Hz,
H-2), 4.50 (ddd, 1H, J=7.2, 6.8, 4.4 Hz, H-4), 5.05 (dd,
1
13
H, J=6.4, 4.4 Hz, H-3); C NMR (125 MHz,
(
1.5:1). This change in the ratios of 2,5-cis to 2,5-trans
CDCl ): l 13.8, 17.1, 22.4, 27.5, 28.5, 38.3, 49.0, 78.3,
products for the cyclisation of 8a, may be attributed to
the steric interaction between the b-OMe and the C-5
methyl group in 9a, which is less pronounced in 10a.
3
+
8
1
2.4, 174.6, 176.7; FABMS: 213 (M +1); IR (CHCl ):
3
−1
770 cm ; Compound 2: mp 53°C; [h] =−18.02 (c 0.75,
D
10
1
CHCl ); lit. [h] =−20.2 (c 0.50, CHCl ); H NMR
3
D
3
(
500 MHz, CDCl ): l 0.92 (t, J=7.2 Hz, 3H, CH ),
3
3
Thus, in the present study the first radical mediated
route was developed for the synthesis of 1 and its
C-3-epimer 2. The formation of the 2,5-trans product
and the change in the ratios of the products formed
from the b-anomer, clearly indicate the effect of the
1
.30−1.54 (m, 7H, 2CH , CH ), 1.74–1.94 (m, 2H,
2 3
CH ), 3.08 (dq, 1H, J=10.0, 7.3 Hz, H-5), 3.45 (dd,
2
1
4
H, J=10.0, 6.0 Hz, H-2), 4.50 (ddd, 1H, J=7.2, 6.8,
13
.5 Hz, H-4), 5.02 (dd, 1H, J=6.0, 4.5 Hz, H-3);
C
NMR (125 MHz, CDCl ): l 10.9, 13.8, 22.4, 27.4, 28.4,
3
2%-stereocentre, which was well exploited for the suc-
+
3
1
6.6, 44.6, 77.9, 81.6, 172.0, 176.2; FABMS: 213 (M +
); IR (CHCl ): 1770 cm .
cessful synthesis of 1.
−1
3
Spectral analysis for selected compounds
1
Acknowledgements
Compound 11: [h] =+36.48 (c 0.50, CHCl ); H NMR
D
3
(
200 MHz, CDCl ): l 0.92 (t, 3H, J=7.3 Hz, CH ),
3
3
1
.20–1.50 (m, 7H, 2CH , CH ), 1.64–1.82 (m, 2H,
2 3
T. Gopinath is thankful to UGC, New Delhi, for
financial support.
CH ), 2.86 (dq, 1H, J=9.8, 7.0 Hz, H-5), 3.0 (dd, 1H,
J=9.8, 6.9 Hz, H-2), 3.32 (s, 3H, OMe), 4.02 (ddd, 1H,
J=7.9, 4.3, 3.6 Hz, H-4), 4.82 (dd, 1H, J=6.9, 3.6 Hz,
2
+
H-3), 4.96 (s, 1H, H-1); FABMS: 228 (M ); IR (neat);
References
−
1
1
770 cm ; Compound 12: [h] =+11.36 (c 0.50, CHCl );
D
3
1
H NMR (200 MHz, CDCl ): l 0.92 (t, 3H, J=7.35
3
1
. Giese, B.; Kopping, B.; Gobel, T.; Dickhaut, J.; Thoma,
G.; Kulicke, K. J.; Trach, F. In Radical Cylisation Reac-
tions in Organic Reactions; Paquet, L. A.; et al., Eds.;
John Wiley & Sons, 1996; Vol. 48, p. 301.
Hz, CH ), 1.16–1.50 (m, 7H, 2CH , CH ), 1.58–1.72 (m,
3
2
3
2
1
1
H, CH ), 2.50 (dq, 1H, J=9.1, 6.8 Hz, H-5), 2.64 (dd,
H, J=9.1, 4.5 Hz, H-2), 3.30 (s, 3H, OMe), 3.94 (ddd,
H, J=6.9, 6.8, 4.5 Hz, H-4), 4.76 (s, 1H, H-1), 4.86
2
2
3
. Sharma, G. V. M.; Vepachedu, S. R. Tetrahedron Lett.
+
(dd, 1H, J=6.8, 4.5 Hz, H-3); FABMS: 228 (M ); IR
1
990, 31, 4931–4932.
. Sharma, G. V. M.; Vepachedu, S. R. Tetrahedron 1991,
7, 519–524.
−
1
(
neat); 1770 cm ; Compound 12a: [h] =+13.96 (c 0.50,
D
4
C H
O
C H
4 9
O
4
9
4. Sharma, G. V. M.; Krishnudu, K.; Mahender Rao, S.
R’
R’
Tetrahedron: Asymmetry 1995, 6, 543–548.
H
H
5
6
7
. Sharma, G. V. M.; Krishnudu, K. Tetrahedron Lett.
1995, 36, 2661–2664.
R
R
. Sharma, G. V. M.; Krishnudu, K. Tetrahedron: Asymme-
try 1999, 10, 869–875.
. McCorkindale, N. J.; Wright, J. L.; Brian, P. W.; Clarke,
S. M.; Hutchinson, S. A. Tetrahedron Lett. 1968, 727–
O
O
H
(
H
TsA
Chair)
TsB
(Boat)
730.
8. Kato, M.; Kageyama, M.; Tanaka, R.; Kuwahara, K.;
Figure 1.
Yoshikoshi, A. J. Org. Chem. 1975, 40, 1932–1941.