24. Kodomari, M.; Suzuki,Y.; Yoshida, K. Chem. Commun. 1997,
1567.
In conclusion, we have developed a convenient metal free
graphite catalyzed green method for the synthesis of 3,4-
dihydropyrimidin-2(1H)-ones and 3,4-dihropyrimidin-2(1H)-
thiones. The synthesized compounds were tested for their
invitroantidiabetic activity with acarbose as standard. 3,4-
25. Besson, T.; Thiery, V.; Dubac, J. Microwaves in Organic
Synthesis 2nd ed.; Wiley-VCH: Weinheim, Germany, 2006; Vol. 1,
pp 416.
26. Sharghi, H.; Sarvari, M. H. Synthesis, 2003, 243
27. Kadam, H. K.; Khan, S.; Kunkalkar, R. A.; Tilve, S. G.
Tetrahedron Lett. 54, 2013, 1003.
dihropyrimidin-2(1H)-thione displayed 97.2
300µg/mL.
% activity at
28. Kassaee, Z. M.; Masrouri, H.; Movahedi, F.; Mohammadi, R.
Helv. Chim. Acta 93, 2010, 261.
Acknowledgments
29. Moghaddas, M.; Davoodnia, A.; Heravi, M. M.; Tavakoli-Hoseini,
N. Chin. J. Catal. 33, 2012, 706.
30. (a) Rameshwar, N.; Parthasarathy, T.; Ramreddy, A. Indian J.
Chem. 47B, 2008, 1871.
We are thankful to the Council of Scientific and Industrial
Research (CSIR), New Delhi for project funding. KD is also
thankful to CSIR for awarding CSIR-NET (National Eligibility
Test) Senior Research fellowship.SNM acknowledges
Department of Biotechnology, New Delhi, for award of DBT-
SRF.
(b) Ding, D.; Zhao, C-G. Eur. J. Org. Chem. 2010, 3802.
31. (a) Tajbakhsh, M.; Mohajerani, B.; Heravi, M. M.; Ahmadi, N. A.
J. Mol. Catal. A. Chem. 236, 2005, 216.
32. Lin, H. X.; Zhao, Q. J.; Xu, B.; Wang, X. H. Chin. Chem. Lett. 18,
2007, 502.
33. (a) Salehi, P.; Dabiri, M.; Zolfigol, A. M.; Fard, B. A. M.
Tetrahedron. Lett. 44, 2003, 2889.
References and notes
(b) Makaev, F.; Styngach, E.; Muntyanu, V.; Pogrebnoi, S.;
Rybkovskaya, Z.; Barba, A. Russ. J. Org. Chem. 43, 2007, 1512.
34. (a) Russowsky, D.; Lopes, F. A.; da Silva, S. S.; Canto, K. F. S.;
Montes D’Oca, M. G.; Godoi, M. N. J. Braz. Chem. Soc. 15, 2004,
165.
1. Eichler, H. G.; Korn, A.; Gasic, S.; Pirson,W.; Businger, J.
Diabetologia 1984, 26, 278.
2. Rhabaso – Lhoret, R.; Chiasson J.L. In α – Glucosidase inhibitors;
Defronzo, R. A.; Ferrannini, E.; Keen, H.; Zimmet, P., Ed.;
International Textbook of Diabetes Mellitus Vol. 1, 3rd. John
Wiley & Sons Ltd., UK, 2004; pp. 901-914.
(b) da Silvaa, D. L.; Fernandes, S. A.; Sabinoa, A. A.; de Fátimaa
A. Tetrahedron Lett. 52,2011, 6328.
35. Representative procedure for the graphite catalyzed synthesis of
3,4-dihydropyrimidinone/thiones: A mixture of benzaldehyde (106
mg, 1 mmol), urea (60 mg, 1 mmol), ethylacetoacetate (130 mg, 1
mmol) and (10 mg, 10% w/w) graphite was heated at 70°C (120
°C in case of thiourea). The heterogenous mixture slowly became
clear and a solid product started to seperate out. After completion
of the reaction (1h, TLC) the entire mass solidified. The solid
mass was crushed, washed with 5 mL of cold water to remove
unreacted urea and filtered.The solid was then dissolved in hot
ethanol, and the catalyst was separated by filtration. On cooling
the filtrate pure crystals of the product (1a) was obtained, yield
97% (237 mg). In all the cases, the product obtained was
characterized by comparing spectral data and melting points with
literature data.
3. Mai, T. T.; Chuyen, N. V. Biosci. Biotecnol. Biochem. 2007, 71,
69.
4. Brzozowski, A. M.; Davies, G. J. Biochemistry 1997, 36, 10837.
5. (a) Manaharana, T.; Appleton, D.; Cheng, H. M.; Palanisamy, U.
D. Food Chem. 2012, 132, 1802.
(b) Olaokun, O. O.; McGaw, L. J.; Eloff, J. N.; Naidoo, V. Bmc
Complem. Altern. M. 2013, 13, 94.
6. (a) Kappe, C. O.; Eur. J. Med. Chem. 2000, 35, 1043.
(b) Singh, K.; Arora, D.; Singh, K.; Singh, S. Mini-Rev. Med.
Chem. 1, 2009, 95-106.
(c) Singh, T. P.; Singh, O. M. In Synthesis and bioactivity of
dihydropyrimidines; Ameta, K. L.; Pawar, R. P.; Domb, A. J., Ed.;
Nova Science Publishers; New York, 2012; pp 117-135.
7. (a) Kim. S. S.; Choi, B. S.; Lee, J. H.; Lee, K. K.; Lee, T. H.; Kim,
Y. H.; Hyunik, S. Synlett 2009, 599.
Ethyl
6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-
carboxylate 1a. white solid, mp 200-202 °C; 1H NMR (400 MHz,
DMSO-d6) δ = 1.008 (t, 3H, J = 6.8 Hz, CH3), 2.182 (s, 3H, CH3),
3.898 (q, 2H, J = 6.8 Hz, CH2), 5.194 (d, 1H, CH), 6.633(s br.,
1H, NH), 7.184-7.081 (m, 5H, aromatic), 8.664 (s br., 1H, NH);
13C NMR (100 MHz, DMSO-d6) δ = 14.07 (CH3), 18.33 (CH3),
55.15 (CH), 59.63 (CH2), 100.47 (Cq), 126.59 (2xCH), 127.47
(CH), 128.36(2xCH), 144.39(Cq), 147.37(Cq), 153.24(Cq)165.80
(Cq).νmax(KBr) 3244, 3115, 2980, 1726, 1701, 1649, 1222 cm-1
36. The α-amylase inhibitory study was modified from Miller’s
method.37A solution of α-amylase (ex-porcine pancreas, SRL
SiscoPvt Ltd, India) was prepared by mixing 1.28 mg of enzyme
in 25 ml of phosphate buffer saline. Synthetic compounds (at a
concentration of 50, 150 or 300 µg/ml resuspended in methanol)
were added to 15 µl of α-amylase and incubated at 37°C for 30
minutes. After the pre-incubation, 0.5 ml of PBS containing 1% of
starch was added and incubated at 37°C for 10 minutes. The
reaction was terminated by adding 1 ml of DNSA (3,5-
(b) Yamamoto, K.; Chen, Y. G.; Buono, F. G. Org. Lett. 7, 2005,
4673.
(c) Wang, X-C.; Quan, Z. J.; Zhang, Z. Tetrahedron 63, 2007,
8227.
(d) Pérez, R.; Beryozkina, T.; Zbruyev, O. I.; Haas, W.; Kappe, C.
O. J. Comb. Chem. 4, 2004, 501.
(e) Lengar, A.; Kappe, C. O. Org. Lett. 6, 2004, 771.
8. Biginelli, P. Gazz. Chim. Ital. 23, 1893, 360-413.
9. Wan, J-P.; Liu, Y. Synthesis 2010, 3943.
10. Salim, S. D.; Akamanchi, K. G. Catal. Commun. 12, 2011, 1153.
11. Hankari, S. E.; Motos-Pérez, B.; Hesemann, P.; Bouhaoussb, A.;
Moreaua, J. J. E. Chem. Commun. 47, 2011, 6704.
12. Dastmalbaf, M. Z.; Davoodnia, A.; Heravi, M. M.; Hoseini, N. T.;
Khojastehnezhad, A.; Zamani, H. A. Bull Korean Chem. Soc. 32,
2011, 656.
13. Kulkarni, M. G.; Chavhan, S. W.; Shindhe, M. P.; Gaikwad, D.
D.; Borhade, A. S.; Dhondge, A. P.; Shaikh, Y. B.; Ningdale, V.
B.; Desai, M. P.; Birhade, D. R. Beil. J. Org. Chem. 5, 2009, 4.
14. Starcevich, J. T.; Laughlin, J. T.; Mohan. R. S. Tetrahedron
Lett.54, 2013, 983.
dinitrosalicylic acid) and heating in a boiling water bath for 10
minutes. The tubes were cooled to room temperature and OD at
540 nm was determined using Shimadzu spectrometer. 0.2% (w/v)
maltose was used as reference sugar. Acarbose (PHR1253, Fluka)
was used as a positive control for demonstrating α-amylase
inhibition. All samples were evaluated in triplicates and standard
deviation was calculated. Results were expressed as % inhibition =
(Test control- test sample/ Test control) × 100.
15. Hu, E. H.; Sidler, D. R.; Dolling, U.-H. J. Org. Chem. 63, 1998,
3454.
16. Lu, J.; Ma, H. Synlett 2000, 63
17. Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 65, 2000, 6270.
18. Ma, Y.; Qian, C.; Wang, L.; Yang, M. J. Org. Chem. 65, 2000,
3864.
37. Miller, G. L. Anal. Chem. 31, 1959, 426.
19. Peng, J.; Deng, Y. Tetrahedron Lett. 42, 2001, 5917.
20. Shen, Z.-L.; Xu, X.-P.; Ji, S.-J. J. Org. Chem. 75, 2010, 1162.
21. Debache, A.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni,
B. Tetrahedron Lett. 49, 2008, 6119.
Supplementary Material
Supplementary material that may be helpful in the review
process should be prepared and provided as a separate electronic
file. That file can then be transformed into PDF format and
submitted along with the manuscript and graphic files to the
appropriate editorial office.
22. Pandey, J.; Anand, N.; Tripathi, R. P. Tetrahedron 65, 2009,
9350.
23. (a) Sereda, G. A.; Rajpara, V. B.; Slaba, R. L. Tetrahedron 63,
2007, 8351.
(b) Sereda, G. A. Tetrahedron Lett. 45, 2004, 7265.