The Journal of Organic Chemistry
Page 26 of 27
1
2
3
4
5
6
7
8
(80)
(81)
(82)
(83)
Clark, J. H.; Macquarrie, D. J.; Sherwood, J. The combined role of catalysis and solvent effects on the biginelli reaction:
Improving efficiency and sustainability. Chem.-Eur. J. 2013, 19, 5174ꢀ5182.
GonzalezꢀOlvera, R.; Demare, P.; Regla, I.; Juaristi, E. Application of (1S,4S)ꢀ2,5ꢀdiazabicyclo 2.2.1 heptane derivatives in
asymmetric organocatalysis: the Biginelli reaction. Arkivoc 2008, 61ꢀ72.
Kappe, C. O. A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an Nꢀ
acyliminium ion intermediate. J. Org. Chem. 1997, 62, 7201ꢀ7204.
Cepanec, I.; Litvic, M.; FilipanꢀLitvic, M.; Grungold, I. Antimony(III) chlorideꢀcatalysed Biginelli reaction: a versatile
method for the synthesis of dihydropyrimidinones through a different reaction mechanism. Tetrahedron 2007, 63, 11822ꢀ
11827.
9
(84)
Litvic, M.; Vecenaj, I.; Ladisic, Z. M.; Lovric, M.; Vinkovic, V.; FilipanꢀLitvic, M. First application of
hexaaquaaluminium(III) tetrafluoroborate as a mild, recyclable, nonꢀhygroscopic acid catalyst in organic synthesis: a
simple and efficient protocol for the multigram scale synthesis of 3,4ꢀdihydropyrimidinones by Biginelli reaction.
Tetrahedron 2010, 66, 3463ꢀ3471.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(85)
(86)
Folkers, K.; Johnson, T. B. Researches on Pyrimidines. CXXXVI. The Mechanism of Formation of Tetrahydropyrimidines
by the Biginelli Reaction. J. Am. Chem. Soc. 1933, 55, 3784ꢀ3791.
Alvim, H. G. O.; Correa, J. R.; Assumpcao, J. A. F.; da Silva, W. A.; Rodrigues, M. O.; de Macedo, J. L.; Fioramonte, M.;
Gozzo, F. C.; Gatto, C. C.; Neto, B. A. D. HeteropolyacidꢀContaining Ionic LiquidꢀCatalyzed Multicomponent Synthesis of
Bridgehead Nitrogen Heterocycles: Mechanisms and Mitochondrial Staining. J. Org. Chem. 2018, 83, 4044ꢀ4053.
Medeiros, G. A.; da Silva, W. A.; Bataglion, G. A.; Ferreira, D. A. C.; de Oliveira, H. C. B.; Eberlin, M. N.; Neto, B. A. D.
Probing the Mechanism of the Ugi FourꢀComponent Reaction with ChargeꢀTagged Reagents by ESIꢀMS(/MS). Chem.
Commun. 2014, 50, 338ꢀ340.
Souza, R. Y.; Bataglion, G. A.; Ferreira, D. A. C.; Gatto, C. C.; Eberlin, M. N.; Neto, B. A. D. Insights on the Petasis
BoronoꢀMannich multicomponent reaction mechanism. RSC Adv. 2015, 5, 76337ꢀ76341.
Alvim, H. G. O.; Bataglion, G. A.; Ramos, L. M.; de Oliveira, A. L.; de Oliveira, H. C. B.; Eberlin, M. N.; de Macedo, J.
L.; da Silva, W. A.; Neto, B. A. D. TaskꢀSpecific Ionic Liquid Incorporating Anionic HeteropolyacidꢀCatalyzed Hantzsch
and Mannich Multicomponent Reactions. Ionic Liquid Effect Probed by ESIꢀMS(/MS). Tetrahedron 2014, 70, 3306ꢀ3313.
Coelho, F.; Eberlin, M. N. The Bridge Connecting GasꢀPhase and Solution Chemistries. Angew. Chem., Int. Ed. 2011, 50,
5261ꢀ5263.
(87)
(88)
(89)
(90)
(91)
(92)
(93)
Santos, L. S. What do We Know about Reaction Mechanism? The Electrospray Ionization Mass Spectrometry Approach. J.
Braz. Chem. Soc. 2011, 22, 1827ꢀ1840.
Ifa, D. R.; Wu, C. P.; Ouyang, Z.; Cooks, R. G. Desorption electrospray ionization and other ambient ionization methods:
current progress and preview. Analyst 2010, 135, 669ꢀ681.
Santos, V. G.; Godoi, M. N.; Regiani, T.; Gama, F. H. S.; Coelho, M. B.; de Souza, R. O. M. A.; Eberlin, M. N.; Garden, S.
J. The Multicomponent Hantzsch Reaction: Comprehensive Mass Spectrometry Monitoring Using ChargeꢀTagged
Reagents. Chem.-Eur. J. 2014, 20, 12808ꢀ12816.
De Souza, R.; da Penha, E. T.; Milagre, H. M. S.; Garden, S. J.; Esteves, P. M.; Eberlin, M. N.; Antunes, O. A. C. The
ThreeꢀComponent Biginelli Reaction: A Combined Experimental and Theoretical Mechanistic Investigation. Chem.-Eur. J.
2009, 15, 9799ꢀ9804.
Iacobucci, C.; Reale, S.; De Angelis, F. Elusive Reaction Intermediates in Solution Explored by ESIꢀMS: Reverse
Periscope for Mechanistic Investigations. Angew. Chem., Int. Ed. 2016, 55, 2980ꢀ2993.
Iacobucci, C.; Reale, S.; Gal, J.ꢀF.; De Angelis, F. Insight into the Mechanisms of the Multicomponent Ugi and Ugi–Smiles
Reactions by ESIꢀMS(/MS). Eur. J. Org. Chem. 2014, 2014, 7087ꢀ7090.
Bain, R. M.; Pulliam, C. J.; Cooks, R. G. Accelerated Hantzsch electrospray synthesis with temporal control of reaction
intermediates. Chem. Sci. 2015, 6, 397ꢀ401.
Ramos, L. M.; Guido, B. C.; Nobrega, C. C.; Corrêa, J. R.; Silva, R. G.; de Oliveira, H. C. B.; Gomes, A. F.; Gozzo, F. C.;
Neto, B. A. D. The Biginelli Reaction with an ImidazoliumꢀTagged Recyclable Iron Catalyst: Kinetics, Mechanism, and
Antitumoral Activity. Chem. -Eur. J. 2013, 19, 4156ꢀ4168.
Gozzo, F. C.; Santos, L. S.; Augusti, R.; Consorti, C. S.; Dupont, J.; Eberlin, M. N. Gaseous supramolecules of
imidazolium ionic liquids: "Magic" numbers and intrinsic strengths of hydrogen bonds. Chem.-Eur. J. 2004, 10, 6187ꢀ
6193.
(94)
(95)
(96)
(97)
(98)
(99)
(100) Chisholm, D. M.; McIndoe, J. S. Charged ligands for catalyst immobilisation and analysis. Dalton Trans. 2008, 3933ꢀ3945.
(101) Vikse, K. L.; Ahmadi, Z.; McIndoe, J. S. The application of electrospray ionization mass spectrometry to homogeneous
catalysis. Coord. Chem. Rev. 2014, 279, 96ꢀ114.
(102) Limberger, J.; Leal, B. C.; Monteiro, A. L.; Dupont, J. Chargeꢀtagged ligands: useful tools for immobilising complexes and
detecting reaction species during catalysis. Chem. Sci. 2015, 6, 77ꢀ94.
(103) Santos, L. S.; Neto, B. A. D.; Consorti, C. S.; Pavam, C. H.; Almeida, W. P.; Coelho, F.; Dupont, J.; Eberlin, M. N. The
role of ionic liquids in coꢀcatalysis of BaylisꢀHillman reaction: interception of supramolecular species via electrospray
ionization mass spectrometry. J. Phys. Org. Chem. 2006, 19, 731ꢀ736.
(104) de Oliveira, V. M.; de Jesus, R. S.; Gomes, A. F.; Gozzo, F. C.; Umpierre, A. P.; Suarez, P. A. Z.; Rubim, J. C.; Neto, B. A.
D. Catalytic Aminolysis (Amide Formation) from Esters and Carboxylic Acids: Mechanism, Enhanced Ionic Liquid Effect,
and its Origin. ChemCatChem 2011, 3, 1911ꢀ1920.
(105) Gore, S.; Baskaran, S.; Koenig, B. Efficient synthesis of 3,4ꢀdihydropyrimidinꢀ2ꢀones in low melting tartaric acidꢀurea
mixtures. Green Chem. 2011, 13, 1009ꢀ1013.
(106) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.;
Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng,
G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.;
Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.;
Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.: Gaussian 09, Revision A.02. Wallingford CT, 2009.
(107) Chai, J.ꢀD.; HeadꢀGordon, M. Longꢀrange corrected hybrid density functionals with damped atomꢀatom dispersion
corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615ꢀ6620.
(108) Klahn, M.; Garland, M. V. On the Mechanism of the Catalytic Binuclear Elimination Reaction in Hydroformylation
Systems. ACS Catal. 2015, 5, 2301ꢀ2316.
26
ACS Paragon Plus Environment