4318
B. V. Lingaiah et al. / Tetrahedron Letters 47 (2006) 4315–4318
2. (a) Nicolaou, K. C.; Khim, D. W.; Baati, R. Angew.
Chem., Int. Ed. 2002, 41, 3701; (b) Hoenberer, K. R.;
Hamblet, C. L.; Leighton, J. L. J. Am. Chem. Soc. 2000,
122, 12894; (c) Felphin, F. X.; Lebreton, J. J. Org. Chem.
2002, 67, 9192; (d) Yamamoto, Y. Acc. Chem. Res. 1987,
20, 243.
aldehydes is independent of substituent effects and
depends mainly on activation of the carbonyl moiety.
The high coordinating ability of gadolinium(III) towards
the oxygen of the carbonyl moiety may be responsible
for the effective activation of the carbonyl moiety, which
drives the reaction towards the product. We propose the
mechanism as depicted in Figure 1.
3. (a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207;
(b) Marshall, J. A. Chem. Rev. 1996, 96, 31.
4. (a) Hachiya, I.; Kobayashi, S. J. Org. Chem. 1993, 58,
6958; (b) Hamasaki, S.; Chounan, Y.; Horino, H.;
Yamamoto, Y. Tetrahedron Lett. 2000, 41, 9883; (c) Ley,
S. V.; Cox, L. R. J. Chem. Soc., Perkin Trans. 1 1997,
3315; (d) Shibata, I.; Fukuoka, S.; Yoshimura, N.;
Matsuda, H.; Baba, A. J. Org. Chem. 1997, 62, 3790; (e)
Roush, W. S.; Walts, A. E.; Hoong, L. K. J. Am. Chem.
Soc. 1985, 107, 8186.
5. (a) Nagayama, S.; Kobayashi, S. Angew. Chem. Int.
Ed. 2000, 93, 567; (b) Kobayashi, S.; Aoyama, N.;
Manabe, K. Synlett 2002, 483; (c) Aspinall, H. C.; Bissett,
J. S.; Greeves, N.; Levin, D. Tetrahedron Lett. 2002, 43,
319.
6. (a) Inoue, K.; Yasuda, M.; Baba, A. Synlett 1997, 699; (b)
Naruta, Y.; Ushida, S.; Maruyama, K. Chem. Lett. 1979,
919; (c) Andrade, C. K. Z.; Azevedo, N. R.; Oliveira, G.
R. Synthesis 2002, 928; (d) Choudary, B. M.; Sreedhar,
Ch.; Shekar, Ch. V. R. Synlett 2002, 1694–1696.
7. (a) Andrade, C. K. Z.; Azevedo, R. Tetrahedron Lett.
2001, 42, 6473; (b) Davis, A. P.; Jaspars, M. J. Chem. Soc.,
Pekin Trans. 1 1992, 2111; (c) Takuwa, A.; Nishigaichi,
Y.; Yamashitha, K.; Iwamoto, H. Chem. Lett. 1990, 1761;
(d) Roush, W. R.; Hoong, L. K.; Palmer, M. A. J.; Park,
J. C. J. Org. Chem. 1990, 55, 4109.
Allylation of ketones is a challenging task due to the
lower electrophilicity of the carbonyl group and steric
hindrance present in ketones. After successful allylation
of aldehydes we studied the allylation of ketones using
GdCl3Æ6H2O as a catalyst and tetraallyltin as the allylat-
ing agent. The reaction of acetophenone proceeded
smoothly and gave the corresponding homoallylic
alcohol. Encouraged by this result, this method was
extended to various ketones such as aryl, alkyl, cyclic
heterocyclic and a,b-unsaturated ketones (Scheme 2).
In all cases the reaction proceeded smoothly and gave
the corresponding homoallylic alcohols in good to excel-
lent yields. The results are summarized in Table 2. The
usage of hydrated form of catalyst is having an advan-
tage in reduced reaction timings compared to the reac-
tion carried out in methanol.15
In conclusion, we have demonstrated a simple, conve-
nient and efficient protocol for the synthesis of homo-
allylic alcohols from carbonyl compounds and
allylstannanes using GdCl3Æ6H2O under mild and neu-
tral conditions. This catalyst offers several advantages
including mild conditions, clean reactions, shorter reac-
tion times, high yields of products and lower catalytic
loading.
8. (a) Fleming, I.; Donogues, J.; Smithers, R. Org. React.
1989, 37, 57; (b) Hunter, R.; Tomlinson, G. D. Tetra-
hedron Lett. 1989, 30, 2013.
9. (a) Hosomi, A.; Endo, M.; Sakurai, H. Chem. Lett. 1976,
941; (b) McCluskey, A.; Mayer, D. M.; Young, D. J.
Tetrahedron Lett. 1997, 38, 5217.
10. (a) Tanaka, H.; Yamashita, S.; Ikemoto, Y.; Torii, S.
Tetrahedron Lett. 1988, 29, 1721; (b) Komastu, N.; Uda,
M.; Suzuki, H.; Takahashi, T.; Domae, T.; Wada, M.
Tetrahedron Lett. 1997, 38, 7215.
11. Ma, Y.; Qian, C.; Xie, M.; Sun, J. J. Org. Chem. 1999, 64,
6462.
12. Lingaiah, B. P. V.; Reddy, G. V.; Yakaiah, T.; Narsaiah,
B.; Reddy, S. N.; Yadla, R.; Rao, P. S. Synth. Commun.
2004, 34, 4431–4437.
Acknowledgements
The authors are thankful to Dr. J. S. Yadav, Director,
IICT and Shri. S. Narayan Reddy, Head, Fluoroorganic
Division, IICT, Hyderabad for their constant encour-
agement and financial support from an industry-spon-
sored project.
13. Reddy, G. V.; Maitraie, D.; Narsaiah, B.; Rambabu, Y.;
Rao, P. S. Synth. Commun. 2001, 31, 2881.
14. Aggarwal, V. K.; Vennall, G. P. Synthesis 1998, 1822.
15. Cokley, T. M.; Harvey, P. J.; Marshall, R. L.; Mc
Cluskey, A.; Young, D. J. J. Org. Chem. 1997, 62, 1961–
1964.
16. Experimental procedure: A mixture of aldehyde (2 mmol),
allyltributylstannane (2 mmol) or [1 mmol of tetraallyltin
for the allylation of 2 mmol of ketone] and gadolinium
chloride hexahydrate (5 mol %) in acetonitrile (2 mL) was
stirred at ambient temperature for an appropriate time
(see Tables 1 and 2). After completion of the reaction,
as indicated by TLC, the reaction mixture was diluted
with water (20 mL) and extracted with ethyl acetate
(2 · 15 mL). The combined organic layers was washed
with brine, dried over anhydrous Na2SO4 and concen-
trated in vacuo, and the resulting product was purified by
column chromatography on silica gel (Merck, 60–120
mesh, ethyl acetate–hexane, 2:8) to afford pure homo-
allylic alcohol.
References and notes
1. (a) Denmark, S. E.; Fu, J.-P. Chem. Rev. 2003, 103, 2763;
For examples see: (b) Keck, G. E.; Tarbet, K. H.; Geraci,
L. S. J. Am. Chem. Soc. 1993, 115, 8467; (c) Cosata, A. L.;
Piazza, M. G.; Tagliavivi, E.; Trombini, C.; Ronchi, A. U.
J. Am. Chem. Soc. 1993, 115, 7001; (d) Yanagisawa, A.;
Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem.
Soc. 1996, 118, 4723; (e) Yanagisawa, A.; Ishiba, A.;
Nakashima, H.; Yamamoto, H. Synlett 1996, 88; (f)
Yanagisawa, A.; Nakashima, H.; Nakatsuka, Y.; Ishiba,
A.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2001, 74, 1129;
(g) Hanawa, H.; Hashimoto, H.; Maruoka, K. J. Am.
Chem. Soc. 2003, 125, 1708; (h) Cozzi, P. G.; Orioli, P.;
Tagliavini, E.; Umani-Ronchi, A. Tetrahedron Lett. 1997,
38, 145; (i) Loh, T.-P. In Science of Synthesis; Yamamoto,
H., Ed.; Georg Thieme Velag Stuttgart: New York, 2004;
p 413.