130
H. Matsumura et al. / Journal of Molecular Catalysis A: Chemical 250 (2006) 122–130
[12] C.-B. Wang, R.G. Herman, C. Shi, Q. Sun, J.E. Roberts, Appl. Catal.
A 247 (2003) 321–333.
[13] V. Fornes, C. Lopez, H.H. Lopez, A. Martinez, Appl. Catal. A 249
(2003) 345–354.
[14] B. Lin, X. Wang, Q. Guo, W. Yang, Q. Zhang, Y. Wang, Chem. Lett.
32 (2003) 860–861.
[15] H. Berndt, A. Martin, A. Bru¨ckner, E. Schreier, M. Mu¨ller, H. Kosslick,
G.-U. Wolf, B. Lu¨cke, J. Catal. 191 (2000) 384–400.
[16] Q. Zhang, W. Yang, X. Wang, Y. Wang, T. Shishido, K. Takehira, Micro-
por. Mesopor. Mater. 77 (2005) 223–234.
[17] Y. Teng, F. Ouyang, L. Dai, T. Karasuda, H. Sakurai, K. Tabata, E.
Suzuki, Chem. Lett. 28 (1999) 991–992.
[18] T. Takemoto, K. Tabata, Y. Teng, A. Nakayama, E. Suzuki, Appl. Catal.
A 205 (2001) 51–59.
[19] K. Tabata, Y. Teng, T. Takemoto, E. Suzuki, M.A. Banares, M.A. Pena,
J.L.G. Fierro, Catal. Rev. 44 (2002) 1–58.
[20] C. Batiot, B.K. Hodnett, Appl. Catal. A 137 (1996) 179–191.
[21] K. Nakagawa, C. Kajita, N. Ikenaga, T. Kobayashi, M.N. -Gamo, T.
Ando, T. Suzuki, Chem. Lett. 29 (2000) 1100–1101.
[22] H. Nishimoto, K. Nakagawa, N. Ikenaga, M.N. -Gamo, T. Ando, T.
Suzuki, Appl. Catal. A 264 (2004) 65–72.
[23] K. Nakagawa, K. Okumura, T. Shimamura, N. Ikenaga, T. Suzuki, T.
Kobayashi, M.N. -Gamo, T. Ando, Chem. Lett. 32 (2003) 866–867.
[24] K. Okumura, K. Nakagawa, T. Shimamura, N. Ikenaga, M.N. -Gamo,
T. Ando, T. Kobayashi, T. Suzuki, J. Phys. Chem. B 107 (2003)
13419–13424.
Scheme 1. Catalytic cycle of selective oxidation.
Dia catalyst were observed throughout the reaction, indicating
thatSb2O4 wasthepredominantphaseonO-Dia [45]. Duringthe
selective oxidation, peaks at 780, 690 and 480 cm−1 increased.
Slight increase in peaks around 1100 cm−1 was seen and this
seems to be ascribed to the Sb3+ species. Increase in the absorp-
tion at 480 cm−1 could not be interpreted at present.
These results seem to indicate that a certain portion of lattice
oxygen of ␣-Sb2O4 on the O-Dia was consumed in reacting
with methane leaving Sb2O4−x. The reduced Sb2O4−x on the
O-Dia could be re-oxidized to ␣-Sb2O4 by O2 in the gas phase.
Therefore, it is strongly suggested that the redox cycle existed
between ␣-Sb2O4 and Sb2O4−x (Scheme 1).
4. Conclusions
[25] T. Shimamura, K. Okumura, K. Nakagawa, T. Ando, N. Ikenaga, T.
Suzuki, J. Mol. Catal. A 211 (2004) 97–102.
[26] M.D. Allen, S. Poulston, E.G. Bithell, M.J. Goringe, M. Bowker, J.
Catal. 163 (1996) 204–214.
[27] G. Centi, P. Mazzoli, S. Perathoner, Appl. Catal. A 165 (1997) 273–290.
[28] M.O. Guerrero-Perez, M.A. Banares, Chem. Commn. (2002) 1292–1293.
[29] G. Centi, F. Guarnieri, S. Perathoner, J. Chem. Soc., Faraday Trans. 93
(1997) 3391–3402.
Antimonyoxidesupportedontheoxidizeddiamondshoweda
moderate catalytic activity for the selective oxidation of methane
to formaldehyde. It was suggested that the reaction proceeded by
a redox mechanism between Sb2O4 and Sb2O4−x, while stable
Sb6O13 was almost inactive.
[30] A. Wickman, L.R. Wallenberg, A. Andersson, J. Catal. 194 (2000)
153–166.
Acknowledgment
[31] N. Ballarini, F. Cavani, M. Cimini, T. Trifiro, R. Catani, U. Cornaro, D.
Ghisletti, Appl. Catal. A 251 (2003) 49–59.
[32] J. Nilsson, A.R. Landa-Canovas, S. Hansen, A. Andersson, J. Catal. 186
(1999) 442–457.
[33] L.C. Brazdil, A.M. Ebner, J.F. Brazdil, J. Catal. 163 (1996) 117–121.
[34] J. Nilsson, A.R. Landa-Canovas, S. Hansen, A. Andersson, J. Catal. 160
(1996) 244–260.
This work was partly supported “Hi-Tech Research Center”
Project for Private Universities: by matching fund subsidy from
Ministry of Education, Culture, Sports, Science and Technology
(2003-2007).
References
[35] H.W. Zanthoff, S. Schaefer, G.-U. Wolf, Appl. Catal. A 164 (1997)
105–117.
[36] G. Centi, F. Marchi, S. Perathoner, Appl. Catal. A 149 (1997) 225–244.
[37] Y.A. Saleh-Alhamed, R.R. Hudgins, P.L. Silveston, J. Catal. 161 (1996)
430–440.
[1] A. Parmaliana, F. Arena, J. Catal. 167 (1997) 57–65.
[2] F. Arena, N. Giordano, A. Parmaliana, J. Catal. 167 (1997) 66–76.
[3] H.-F. Lin, R.-S. Liu, K.Y. Liew, R.E. Johnson, J.H. Lunsford, J. Am.
Chem. Soc. 106 (1984) 4117–4121.
[38] F.J. Berry, Adv. Catal. 30 (1981) 97–131.
[39] E.V. Steen, M. Schnobel, R. Walsh, T. Riedel, Appl. Catal. A 165 (1997)
349–356.
[40] P. Botella, P. Concepcion, J.M.L. Nieto, B. Solsona, Catal. Lett. 89
(2003) 249–253.
[41] W. Ueda, K. Oshihara, Appl. Catal. A 200 (2000) 135–143.
[42] H. Zhang, P. Ying, J. Zhang, C. Liang, Z. Feng, C. Li, Stud. Surf. Sci.
Catal. 147 (2004) 547–552.
[4] N.D. Spencer, J. Catal. 109 (1988) 187–197.
[5] T. Suzuki, K. Wada, M. Shima, Y. Watanabe, J. Chem. Soc., Chem.
Commun. (1990) 1159–1160.
[6] L.-X. Dai, Y.-H. Teng, K. Tabata, E. Suzuki, T. Tatsumi, Chem. Lett.
29 (2000) 794–795.
[7] A. de Lucas, J.L. Valverde, L. Rodriguez, P. Sanchez, M.T. Garcia, Appl.
Catal. A 203 (2000) 81–90.
[43] T. Ando, K. Yamamoto, M. Ishii, M. Kamo, Y. Sato, J. Chem. Soc.
Faraday Trans. 89 (1993) 3635–3640.
[8] X. Zhang, D.-H. He, Q.-J. Zhang, Q. Ye, B.-Q. Xu, Q.-M. Zhu, Appl.
Catal. A 249 (2003) 107–117.
[44] C.P. Fenimore, F.J. Martin, Combust. Flame 10 (1966) 135–139.
[45] C.A. Cody, L. Dicarlo, R.K. Darlington, Inorg. Chem. 18 (1979)
1572–1576.
[46] K.A.L. Abdelouabad, U. Roullet, M. Brun, A. Burrows, C.J. Kiely, J.C.
Volta, M. Abon, Appl. Catal. A 210 (2001) 12–136.
[47] F. Sala, F. Trifro, J. Catal. 34 (1974) 68–78.
[9] Y. Wang, K. Otsuka, J. Chem. Soc., Chem. Commun. (1994) 2209–
2210.
[10] A. Parmaliana, F. Arena, F. Frusteri, A. Martinez-Arias, M.L. Granados,
J.L.G. Fierro, Appl. Catal. A 226 (2002) 163–174.
[11] M.M. Koranne, J.G. Goodwin Jr., G. Marcelin, J. Catal. 148 (1994)
378–387.