Communication
ChemComm
of alanine molecules shortens with increasing pressure as well as Notes and references
that observed in the pressure-induced condensation of trimethyl-
1 A. Shinozaki, K. Mimura, H. Kagi, K. Komatu, N. Noguchi and H. Gotou,
J. Chem. Phys., 2014, 141, 084306.
2 T. C. Fitzgibbons, M. Guthrie, E. Xu, V. H. Crespi, S. K. Davidowski,
G. D. Cody, N. Alem and J. V. Badding, Nat. Mater., 2015, 14, 43.
3 F. Cansell, D. Fabre and J. P. Petitet, J. Chem. Phys., 1993, 99, 7300.
4 L. Ciabini, M. Santoro, F. A. Gorelli, R. Bini, V. Schettino and S. Raugei,
Nat. Mater., 2007, 6, 39.
5 L. Ciabini, M. Santoro, R. Bini and V. Schettino, Phys. Rev. Lett.,
2002, 88, 085505.
6 (a) M. Mugnai, G. Cardini and V. Schettino, J. Chem. Phys., 2004,
120, 5327; (b) M. Citroni, M. Ceppatelli, R. Bini and V. Schettino,
J. Chem. Phys., 2005, 123, 194510.
7 (a) M. Mugnai, G. Cardini and V. Schettino, Phys. Rev. B: Condens.
Matter Mater. Phys., 2004, 70, 020101; (b) M. Citroni, M. Ceppatelli,
R. Bini and V. Schettino, Science, 2002, 295, 2058.
8 (a) K. Aoki, S. Usuba, M. Yoshida, Y. Kakudate, K. Tanaka and
S. Fujiwara, J. Chem. Phys., 1988, 89, 529; (b) R. LeSar, J. Chem. Phys.,
1987, 86, 1485.
9 A. Shinozaki, N. Noguchi and H. Kagi, Chem. Phys. Lett., 2013, 574, 66.
10 (a) S. A. Moggach, S. Parsons and P. A. Wood, Crystallogr. Rev., 2008,
14, 143; (b) E. V. Boldyreva, Acta Crystallogr., 2008, A64, 218.
11 (a) N. P. Funnell, A. Dawson, D. Francis, A. R. Lennie, W. G.
Marshall, S. A. Moggach, J. E. Warren and S. Parsons, CrystEngComm,
2010, 12, 2573; (b) N. P. Funnel, W. G. Marshall and S. Parsons,
CrystEngComm, 2011, 13, 5841.
12 H. Sugahara and K. Mimura, Geochem. J., 2014, 48, 51.
13 S. Ohara, T. Kakegawa and H. Nakazawa, Origins Life Evol. Biospheres,
2007, 37, 215.
silanol,9 in which most of the trimethylsilanol dimerized to form
hexamethyldisiloxane accompanied with dehydration.9 In con-
trast, the respective maximum yields of alanylalanine and tri-
alanine were 1.1 Â 10À3 mol molÀ1 and 1.3 Â 10À4 mol molÀ1
with oligomerization of alanine at 11 GPa in the present study.
The average intermolecular distance at 11 GPa should be
longer than that at a reaction threshold, because the most of
alanine molecules are unreacted and solid crystal structure of
alanine is still remained at 11 GPa as reported in the diffraction
studies.11 However, the intermolecular distance of neighbour
alanine molecules fluctuates by molecular vibrations. Moreover,
lattice defects or grain boundaries of alanine crystals could locally
shorten intermolecular distances. Thus, the oligomerization
might occur partially when the neighbour distance of the alanine
molecules approaches a reaction threshold as well as that
proposed in the pressure-induced oligomerization and amorphi-
zation of solid benzene.1,4,16 The hypothesis is supported by our
results that the yields of the oligomers increase with increasing
pressure as portrayed in Fig. 4.
Our results demonstrated that oligomerization of alanine
occurred at pressures higher than 5 GPa even at 25 1C. The
maximum yields of alanylalanine and trialanine were 1.1 Â
10À3 and 1.3 Â 10À4, respectively, at 11 GPa. This finding will
open new windows for understanding the pressure-induced
peptide formation from amino acids.
This work was supported by JSPS KAKENHI Grant Number
25287147 and 26246039. Part of this work was conducted under
the Visiting Researcher’s Program of the Institute for Solid State
Physics, The University of Tokyo. The synchrotron radiation facility
was used at NE7 of KEK, PF-AR with the approval of the Photon
Factory Program Advisory Committee (Proposal No. 2013G609).
14 T. Otake, T. Taniguchi, Y. Furukawa, F. Kawamura, H. Nakazawa
and T. Kakegawa, Astrobiology, 2011, 11, 8.
15 (a) E. Imai, H. Honda, K. Hatori, A. Brack and K. Matsuno, Science,
1999, 283, 831; (b) M. N. Islam, T. Kaneko and K. Kobayashi, Bull.
Chem. Soc. Jpn., 2003, 76, 1171; (c) M. B. Simakov, E. A. Kuzicheva,
I. L. Mal’ko and N. Y. Dodonova, Adv. Space Res., 1996, 18, 61;
(d) M. Tanaka, F. Kaneko, T. Koketsu, K. Nakagawa and T. Yamada,
Radiat. Phys. Chem., 2008, 77, 1164; (e) M. B. Simakov, E. A.
Kuzicheva, N. Y. Dodonova and A. E. Antropov, Adv. Space Res.,
1997, 19, 1063; ( f ) W. Wang, H. Yuan, X. Wang and Z. Yu, Adv. Space
Res., 2007, 40, 1641; (g) S. Fuchida, H. Masuda and K. Shinoda,
Origins Life Evol. Biospheres, 2014, 44, 13.
16 S. Root and Y. M. Gupta, J. Phys. Chem. A, 2009, 113, 1268.
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun., 2015, 51, 13358--13361 | 13361