W. Zhang et al. / Tetrahedron Letters 43 (2002) 6575–6578
6577
3
4
5
6
. Trost, B. M.; Schmidt, T. J. Am. Chem. Soc. 1988, 110,
2301–2303.
. Kadota, I.; Shibuya, A.; Gyoung, Y. S.; Yamamoto, Y.
J. Am. Chem. Soc. 1998, 120, 10262–10263.
. Kadota, I.; Shibuya, A.; Lutete, L. M.; Yamamoto, Y. J.
Org. Chem. 1999, 64, 4570–4571.
. All the compounds prepared by the coupling reaction are
+
1
literature known. 6a: Oil; MS m/z 238 (M ); H NMR
CDCl ) l 7.15–7.40 (m, 10H), 6.56 (d, J=16 Hz, 1H),
(
3
6
3
.27 (dt, J=16, 7 Hz, 1H), 4.14 (dd, J=6.8, 2 Hz, 2H),
13
.69 (t, J=7.1 Hz, 2H), 2.93 (t, J=7.1 Hz, 2H);
C
NMR (CDCl ) l 138.87, 136.68, 132.16, 128.88, 128.48,
3
1
28.33, 127.59, 126.42, 126.18, 126.10, 71.44, 71.21, 36.39.
+
1
6b: Oil; MS m/z 176 (M ); H NMR (CDCl ) l 7.15–7.40
3
(
m, 5H), 6.58 (d, J=16 Hz, 1H), 6.28 (dt, J=16, 7 Hz,
1
1
1
6
H), 4.12 (dd, J=6.8, 2 Hz, 2H), 3.66 (hept, J=6.8 Hz,
1
3
H), 1.19 (d, J=6.8 Hz, 6H); C NMR (CDCl ) l
3
36.77, 131.60, 128.44, 127.39, 126.76, 126.34, 70.84,
+
1
8.61, 22.06. 6c: Oil; MS m/z 300 (M ); H NMR
Scheme 4.
(CDCl ) l 7.42–7.20 (m, 10H), 6.6 (d, J=16 Hz, 1H),
3
6
.34 (dt, J=16, 7 Hz, 1H), 5.49 (s, 1H), 4.18 (dd, J=7, 2
13
Hz, 2H); C NMR (CDCl ) l 142.11, 136.72, 132.26,
3
Pd(PPh ) , phenol 10 was isolated in 55% yield without
3
4
1
8
28.49, 128.40, 127.59, 127.42, 127.00, 126.44, 126.13,
2.58, 69.33. 6d: Oil; MS m/z 190 (M ); H NMR
9
any detectable trace of the Claisen product 15. The
involvement of the phenoxide in a palladium-catalyzed
alkylation can be implied by the failed reactions of
anisole and N,N-dimethylaniline under identical
+
1
(
CDCl ) l 7.20–7.40 (m, 5H), 6.60 (d, J=16 Hz, 1H),
3
6
1
1
.29 (dt, J=16, 7 Hz, 1H), 4.18 (dd, J=7, 2 Hz, 2H),
.26 (s, 9H); C NMR (CDCl ) l 137.03, 131.06, 128.38,
13
3
1
0
conditions.
27.65, 127.30, 126.37, 73.26, 62.77, 27.61. 6e: Oil; MS
+
1
m/z 176 (M ); H NMR (CDCl ) l 7.20–7.42 (m, 5H),
In summary, a method for the efficient synthesis of
allylic ethers and esters from 1-arylpropynes has been
developed. With phenols, the method gives C-alkyla-
tion products in moderate yields. Due to the readily
available nature of alkynes, this chemistry offers
another alternative towards the synthesis of allylic
ethers and esters.
3
6.66 (d, J=16 Hz, 1H), 6.28 (dt, J=16, 7 Hz, 1H), 4.72
13
(
dd, J=7, 2 Hz, 2H), 2.1 (s, 3H); C NMR (CDCl ) l
3
1
6
70.78, 136.14, 134.15, 128.56, 128.02, 126.55, 123.11,
+
1
5.03, 20.96. 6f: Oil; MS m/z 204 (M ); H NMR
(
CDCl ) l 7.22–7.44 (m, 5H), 6.66 (d, J=16 Hz, 1H),
3
6
2
.29 (dt, J=16, 7 Hz, 1H), 4.72 (dd, J=7, 2 Hz, 2H),
.59 (hept, J=7 Hz, 1H), 1.20 (d, J=7 Hz, 6H);
13
C
NMR (CDCl ) l 176.82, 136.25, 133.88, 128.57, 127.99,
3
Representative experimental procedures
1
26.57, 123.41, 64.85, 34.03, 19.01. 6g: Oil; MS m/z 218
+
1
(
M ); H NMR (CDCl ) l 7.22–7.43 (m, 5H), 6.64 (d,
3
For alcohols and phenols: A mixture of 2 mmol 1-
phenylpropyne 1, 4 mmol alcohol, 0.1 mol tetra-
kis(triphenylphosphine) palladium(0), and 0.2 mmol
benzoic acid in 3 ml 1,4-dioxane was heated to 100°C
for 16–20 h.
J=16 Hz, 1H), 6.28 (dt, J=16, 7 Hz, 1H), 4.73 (dd, J=7,
1
3
2
1
3
Hz, 2H), 1.23 (s, 9H); C NMR (CDCl ) l 178.30,
3
36.32, 133.57, 128.57, 127.94, 126.55, 123.56, 64.90,
8.80, 27.22. 6h: Oil; MS m/z 238 (M ); H NMR
+
1
(
CDCl ) l 8.08 (m, 2H), 7.20–7.60 (m, 8H), 6.73 (d,
3
J=16 Hz, 1H), 6.39 (dt, J=16, 7 Hz, 1H), 4.96 (dd, J=7,
For acids: A mixture of 2 mmol of 1-phenylpropyne 1,
13
2
1
1
Hz, 2H); C NMR (CDCl ) l 166.25, 136.11, 134.15,
3
3
mmol acid, 0.1 mmol tetrakis(triphenylphosphine)
32.89, 130.09, 129.56, 128.51, 128.28, 127.99, 126.55,
palladium(0), and 0.2 mmol triethylamine in 3 ml 1,4-
dioxane was heated to 100°C for 10–16 h.
1
23.16, 65.44. 6i: Oil; H NMR (CDCl ) l 8.59 (d, J=2
3
Hz, 1H), 8.45 (dd, J=5, 2 Hz, 1H), 7.69 (ddd, J=8, 2, 2
Hz, 1H), 7.23 (dd, J=8, 5 Hz, 1H), 6.59 (d, J=16 Hz,
1
2
0
H), 6.36 (ddd, J=16, 6, 6 Hz, 1H), 4.14 (dd, J=6, 2 Hz,
References
H), 3.50 (t, J=7 Hz, 2H), 1.62 (m, 2H), 1.42 (m, 2H),
+
1
.94 (t, J=7 Hz, 3H). 10: Oil; MS m/z 224 (M );
H
1
. (a) Trost, B. M.; Brieden, W.; Baringhaus, K. H. Angew.
Chem., Int. Ed. Engl. 1992, 31, 1335–1336; (b) Sirisoma,
N. S.; Woster, P. M. Tetrahedron Lett. 1998, 39, 1489–
492; (c) Evans, D. A.; Campos, K. R.; Tedrow, J. S.;
Michael, F. E.; Gagne, M. R. J. Org. Chem. 1999, 64,
994–2995; (d) Tsuji, J.; Mandai, T. Synthesis 1996, 1–24;
e) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F.
NMR (CDCl ) l 7.14–7.35 (m, 5H), 7.45 (d, J=2 Hz,
1
6.46 (d, J=16 Hz, 1H), 6.35 (dt, J=16, 7 Hz, 1H), 4.96
(s, 1H), 3.49 (d, J=7 Hz, 2H), 2.25 (s, 3H); C NMR
(CDCl ) l 151.52, 137.08, 131.21, 130.90, 130.11, 128.43,
128.14, 128.04, 127.17, 126.11, 125.44, 115.52, 33.93,
20.45. 11: Oil; MS m/z 240 (M ); H NMR (CDCl ) l
3
H), 6.89 (dd, J=7, 2 Hz, 1H), 6.68 (d, J=7 Hz, 1H),
13
1
3
2
(
+
1
3
A. Chem. Rev. 2000, 100, 3067–3125.
7.15–7.40 (m, 5H), 6.65–6.80 (m, 3H), 6.48 (d, J=16 Hz,
2
. (a) Trost, B. M.; Rise, F. J. Am. Chem. Soc. 1987, 109,
1H), 6.35 (dt, J=16, 7 Hz, 1H), 4.89 (s, 1H), 3.66 (s, 3H),
+
1
3
161–3163; (b) Trost, B. M.; Vercauteren, J. Tetrahedron
3.52 (d, J=7 Hz, 2H). 12: Oil; MS m/z 244 (M );
H
Lett. 1985, 26, 131–134.
NMR (CDCl ) l 7.15–7.37 (m, 5H), 7.15 (d, J=2 Hz,
3